Milla nF e er nt áa nl .d, e Oz pH t .i , mM i zo ad ce li aó dn o,ds ei ml du il as ce i ñó on yd ed i ms e ñu or od se du en cb oa nn ct oe nd ce i pó r nu ee b ma sp al ep al i nc ad d oo aa l ug no rc io t nmt roo lador de ciclos.
mencionar que Camp [1] no reporta valores de peor, vol. 129, no. 6, p. 762–774, 2003.
media y DS de los resultados.
[10]M. G. Sahab, A. F. Ashour, and V. V. Toropov, "Cost
optimisation of reinforced concrete flat slab buildings,"
Eng. Struct., vol. 27, no. 3, p. 313–322, 2004.
VI. CONCLUSIONES
Se ha conseguido evaluar el desempeño del Algoritmo [11]H.G. Kwak and J. Kim, "Optimum design of
Simulated Annealing Modificado (ASAM) en el reinforcedconcreteplaneframesbasedonpredetermined
problema de optimización del diseño de muros de section database," Comput. Aided Des., vol. 40, no. 3,
contención. Los valores de las variables de diseño y pp. 396-408, 2008.
pesos obtenidos por ASAM, fueron comparados con los [12]E.G. Talbi, Metaheuristics: From Design to
resultados reportados por Camp [1], mostrando que son Implementation. John Wiley and Sons, 2009.
coherentes y satisfactorios (ver Tabla IV y V), dando así [13]C. Millan, O. Begambre, and E. Millan, "Propuesta
validez al trabajo aquí realizado.
y validación de un algoritmo Simulated annealing
En cuanto a la técnica empleada, se puede observar que modificado para la solución de problemas de
ASAM tiene precisión, robustez, y versatilidad para optimización," Rev. int. métodos numér. cálc. diseño
enfrentar diversos tipos de problemas, con diferentes ing., vol. 30, no. 4, p. 264–270, 2014.
números de variables, esto se ve reflejado en los pesos, [14]B. M. Das, Principles of geotechnical engineering.
pesos promedios, y desviación estándar conseguidos.
Boston: PWS Publishing, 1994.
15]A.C. Institute, "Building code requirements for
structural concrete and commentary (ACI 318-05),"
[
VII. REFERENCIAS
[
1]C. V. Camp andA. Alkin, "Design of Retaining Walls 2005.
Using Big Bang–Big Crunch Optimization," J. Struct. [16]A.Saribaş and F. Erbatur, "Optimization and
Eng., vol. 138, no. 3, pp. 438-448, 2012. sensitivity of retaining structures," J. Geotech. Eng.,
2]B. Ceranic, C. Fryer, and R. W. Baines, "An vol. 122, no. 8, pp. 649-656, 1996.
[
application of simulated annealing to the optimum
design of reinforced concrete retaining structures,"
Comput. Struct, vol. 79, no. 17, pp. 1569-1581, 2001.
[3]V. Yepes, J. Alcala, C. Perea, and F. González-
Vidosa, "A parametric study of optimum earth-retaining
walls by simulated annealing," Eng. Struct, vol. 30, no.
3
, pp. 821-830, 2008.
[4]A. Kaveh and A. Abadi, "Harmony search based
algorithm for the optimum cost design of reinforced
concrete cantilever retaining walls," Int. J. Civ. Eng.,
vol. 9, no. 1, pp. 1-8, 2010.
[5]A. Gandomi, A. Kashani, D. Roke, and M. Mousavi,
"Optimization of retaining wall design using recent
swarm intelligence techniques," Engineering Structures,
vol. 103, pp. 72-84, 2015.
[6]C. Coello, A. D. Christiansen, and F. Santos, "A
simple genetic algorithm for the design of reinforced
concrete beams," Eng. Comput., vol. 13, no. 4, pp. 185-
1
96, 1997.
[7]S. Rajeev and C. S. Krishnamoorthy, "Genetic
algorithms-based methodology for design optimization
of reinforced concrete frames," Comput. Aided Civ.
Infrastruct. Eng., vol. 13, no. 1, pp. 63-74, 1998.
[8]C. V. Camp, S. Pezeshk, and H. Hansson, "Flexural
design of reinforced concrete frames using a genetic
algorithm," J. Struct. Eng., vol. 129, no. 1, pp. 105-115,
2
[
003.
9]C. L. Lee and J. Ahn, "Flexural design of reinforced
concrete frames by genetic algorithm," J. Struct. Eng.,
75
ISSN 2542-3401
UU NN II VV EE RR SS II DD AA DD ,, CC II EE NN CC II AA yy TT EE CC NN OO LL OO GG ÍÍ AA VV oo ll .. 22 12 ,, NN ºº 88 27 MJ u an ri oz o2 20 01 18 7( p( pp p. .6 27 5- 7- 35 5)