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Resumen: El llamado problema de regulación lineal cuadrático es una estrategia de control moderna 
que por medio de la configuración de las matrices de peso Q y R, se encarga de la tediosa labor realizada 
por el especialista en la optimización del controlador; encontrando los parámetros de control que 
reduzcan al mínimo las desviaciones no deseadas. Sin embargo, no existen métodos analíticos simples 
que ayuden al diseñador a definir los valores de dichas matrices, las cuales están en función del sistema, 
del control que se desee realizar y de los esfuerzos de las variables de control; siendo fundamental el 
conocimiento profundo del proceso por parte del ingeniero. Los enfoques clásicos como el ensayo y error, 
el método de Bryson, y la asignación de polos consumen mucho tiempo y no garantizan el rendimiento 
esperado. Esta investigación planteó una metodología basada en algoritmos genéticos y optimización 
por enjambre de partículas para definir las matrices de peso Q y R. Logrando diseñar controladores 
óptimos de forma sencilla, rápida y a partir de un conocimiento básico del sistema a controlar.

Palabras Clave: Regulador lineal cuadrático, matrices de peso Q y R, algoritmos genéticos, optimización 
por enjambre de partículas.

GENETIC ALGORITHMS AND PARTICLE SWITCHING 
OPTIMIZATION TO DEFINE THE MATRICES OF WEIGHT OF 

THE LINEAR QUADRATIC REGULATOR METHODOLOGY
  

Abstract: The linear quadratic regulation problem, its modern control strategy where controller 
parameters are found that minimize unwanted deviations through the configuration of the weight 
matrices Q and R; taking care of the tedious work done by the specialist in the optimization of the 
controller. However, there are no simple analytical methods that help the designer to define the values 
of these matrices, which are a function of the system, the control that is desired and the efforts of the 
control variables; being fundamental knowledge of the process on the part of the engineer. Classic 
approaches such as trial and error, Bryson's method, and pole allocation are labor intensive, time-
consuming and do not guarantee the expected performance. This research proposed a methodology 
based on genetic algorithms and optimization by particle swarm to define the weight matrices Q and R. 
Achieving optimal controllers design easily, fast and with only knowing basically the system to control

Keywords: Quadratic linear regulator, Q and R matrices, genetic algorithms, particle swarm optimization.
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I.INTRODUCCIÓN 
La definición de las matrices Q y R para resolver el 

problema de regulación lineal cuadrático (LQR), repre-
sentan un gran inconveniente en tiempo como en dise-
ño del controlador [1].  Investigaciones desarrolladas 
a mediados de los 90 en adelante han estudiado los al-
goritmos genéticos y la optimización por enjambre de 
partículas  como estrategia para resolver problemas de 
control óptimo, obteniendo buenos resultados [2], [3]. 

Basándose en el algoritmo genético y el algoritmo 
de optimización por enjambre de partículas; el objetivo 
central de este trabajo es desarrollar una metodología 
que permitirá definir las matrices de peso Q y R del 
regulador lineal cuadrático (LQR) con acción integral, 
empleado en sistemas multivariable lineales e invarian-
tes en el tiempo, permitiendo ejecutar de forma más 
sencilla y rápida dicho control garantizando el rendi-
miento esperado. El diseño del controlador se hará en 
tiempo continuo usando Simulink de Matlab©. 

Inicialmente se define la configuración de las ma-
trices de peso Q y R, seguidamente se presentan varios 
modelos de sistemas multivariable (MIMO) lineales 
e invariantes en el tiempo (LTI) tomados de estudios 
previos para ser usados en la prueba de la metodolo-
gía desarrollada. Posteriormente se exponen los pasos 
a seguir para el desarrollo de la metodología propuesta. 
Finalmente se presentan los resultados; que para efectos 
de validación de la metodología desarrollada (algoritmo 
desarrollado (Alg. Des., será la abreviación empleada 
en esta investigación)), se compararán con los obteni-
dos para el algoritmo genético, el algoritmo de optimi-
zación por enjambre de partículas y el método tradicio-
nal más empleado para determinar las matrices de peso 
Q y R del LQR; el ensayo y error (EE), programados 
cada uno de modo independiente. El análisis se hará en 
base a: La convergencia de la función de adaptación [3]. 
Índice de desempeño del LQR [2], [4], [5]. Respuesta 
dinámica de los sistemas a lazo cerrado [7] - [8]

II.DESARROLLO

A.Definición de las matrices Q y R del LQR.
Las matrices de peso Q de (n*n) que penaliza los 

estados y R de (m*m) que penaliza las señales de con-
trol (con n el número de estados (orden del sistema) y 
m el número de entradas (señales de control)) definen 
el LQR. Se configuran en diagonal y ambas deben se 
simétricas; con Q semidefinida positiva (Q≥0), y R de-
finida positiva (R>0) [1] - [4].

B.  Algoritmos genéticos y algoritmos de optimiza-
ción por enjambre de partículas.

Los algoritmos genéticos (GA, por sus siglas en in-
glés)  se basan en la teoría de Darwin sobre la evolución 
de las especies mientras los algoritmos de optimización 
por enjambre de partículas (PSO, por sus siglas en in-
glés), desarrollado por Kennedy y Eberhart en 1995, se 
basan en la capacidad de adaptación de los individuos 
dentro del cúmulo y del cúmulo como tal [2] - [4].

GA se esfuerza por determinar la solución óptima de 
un problema mediante la utilización de tres operadores 
(que lo hacen un algoritmo genético): Selección / Cruce 
/ Mutación; este paso es cíclico, se repite hasta que se 
cumpla un criterio de parada. No necesitan conocimien-
tos específicos sobre el problema que intentan resolver 
pero usan heurística para la resolución de problemas, lo 
cual limita drásticamente el número de datos a utilizar 
[2] - [4].

PSO analiza las interrelaciones de los individuos con 
los integrantes de los grupos; como se afectó con los 
otros y con él mismo, por lo tanto presenta dinámica de 
grupo o conducta social; basado en la población igual 
que GA y comportamiento individual, a diferencia del 
GA [3], [4]. Cada individuo puede modificar su com-
portamiento basado en tres (3) factores: Conocimiento 
sobre el entorno, conocimiento histórico y experiencia 
de los individuos cercanos. Después de varias iteracio-
nes (avances) el cúmulo de partículas tiende a ir a la 
posición del individuo mejor ubicado [3]. En PSO se 
busca que todos los pobladores del sistema alcancen un 
óptimo global. 

C. Modelos MIMOS de sistemas LTI empleados en 
la investigación.

Los sistemas MIMO LTI empleados fueron: Siste-
ma 1: Electro mecanismo multivariable [9]. Sistema 2: 
Evaporador de circulación forzada [10]. Sistema 3: He-
licóptero militar CH-47B [11].

B.METODOLOGÍA 

A. Diseño de la metodología.
El código inicia con el algoritmo genético, al ob-

tener la primera generación esta se mejoró empleando 
optimización por enjambre de partículas. La Figura 1 
muestra el diagrama de flujo de la metodología diseña-
da para la obtención de las matrices de peso Q y R del 
LQR. 



3636

Tolentino S. y Caraballo S. Simulación numérica del flujo de aire.

UNIVERSIDAD, CIENCIA y TECNOLOGÍA  Vol. 21, Nº 82 Marzo 2017 (pp. 4-15)ISSN 2542-3401
36

Juan Segura1, Franyelit Suàrez2, Juan Casierra2 .

UNIVERSIDAD, CIENCIA y TECNOLOGÍA  Vol. 24, Nº 97 Febrero 2020 (pp. 34-41)

Salomón et al., Productividad del proceso minero, mas allá de la producción

ISSN 2542-3401/ 1316-4821

Lorbes et al., Metodología basada en algoritmos genéticos y optimización por enjambre

Figura 1. Diagrama de flujo de la metodología diseñada para obtener las matrices de peso Q y R del LQR, 
a partir de los principios del GA y el PSO.

Sistema en espacio estados

Controlabilidad

Simulación

Cálculo del LQRI

Si

Bandera = 1

Obtención de 
“K” y “Ki””

Parámetros GA y
Población inicial

Definición  valores de 
“Q” y “R”

Bandera = 0

Bandera = 1

Selección

Cruce

Nueva 
generación GA

Si

PCost 
<

PBest_Cost

Actualizar mejor personal 
(Pbest_Position, 

Pbest_Cost)

Actualiza 
mejor global

A
lg

or
itm

o 
PS

O

Aprendizaje de la 
población PSO

Parámetros 
PSO

A
lg

or
itm

o 
ge

né
tic

o

Criterio de
parada

Fin

Evolución (GA) y aprendizaje (PSO)

No

Si

Calcular y actualizar 
velocidades y posiciones 

de las partículas

Función 
Adaptación

PBest_Cost
<

Gbest_Cost

No

No

PCost : Actual función de adaptación de la partícula

PBest_Cost_ Mejor función de adaptación de la partícula en el pasado

Gbest_Cost: Mejor global

Si No

Sistema ampliado. 
Acción integral

Definir 
tamaños de 
“Q “y “R”

Mutación

Iniciar velocidades y 
posiciones (PSO) de la 

población obtenida con GA

Siguiendo los pasos descritos a continuación:
1.Población inicial. Definir parámetros del GA y los 

límites inferior y superior de los parámetros del PSO
2.Definir Q y R
3.Obtener el valor de las ganancias de control pro-

porcional (K) e integral (Ki) usando el comando lqr en 
el software Matlab©

4.Evaluación de la función de adaptación 
5.Inicializar velocidades y posiciones de las partícu-

las (PSO) de la población (obtenida con GA).
a.Bandera 1: Operadores genéticos: selección, cru-

ce, mutación.
b.Bandera 0: Si el costo para la mejor solución local 

es menor que el costo de la mejor solución global, la 
solución global se reemplaza con la solución local. Cal-

cular velocidades y posiciones. Actualizar peso de las 
partículas. En cada etapa, el programa guarda el valor 
de costo y valor de error mínimo y se modifica la posi-
ción de cada partícula.

6.Evaluar criterio de parada. No se cumple, volver 
al paso 2.

El criterio de parada se basó en la premisa de que 
ambas partes del algoritmo resultante de la metodolo-
gía desarrollada (evolución (GA) y aprendizaje (PSO)) 
alcanzaran el mismo valor de error mínimo; para esto 
se verificó que la diferencia entre las soluciones obte-
nidas fuera cero (0) y que dicho valor se repitiera tres 
(3) iteraciones seguidas. La Tabla I, presenta los datos 
usados en la codificación del algoritmo resultante de la 
metodología desarrollada. 
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TABLA I. Parámetros empleados para el algoritmo desarrollado. A partir de los operadores genéticos del 
GA [3] y criterios de aprendizaje para mejorar la ubicación tomados de PSO [2], [12].

Parámetro Datos 

Población inicial 50 

Función de adaptación (FA) ITAE 

Restricciones No aplica 

Selección Torneo 

Cruce Simple (en un punto) 

Probabilidad de cruce (pr) 90% 

Mutación Multigen 

Probabilidad de mutación (pm) 0.05 

C1 2.05 

C2 2.05 

Límite mínimo de variable decisión, VarMin 1e-5 

Límite máximo de variable decisión, VarMaxn 10 

 B. Desarrollo y aplicación de la metodología.
Haciendo uso de la herramienta Matlab© se llevó 

a cabo la programación  la metodología propuesta en 
esta investigación y el diseño del controlador se realizó 
en tiempo continuo usando Simulink de Matlab©. El 
tiempo de simulación empleado fue de cien segundos 
(ts=100 s). Realizándose ajustes al valor de referencia a 
lo largo de la simulación. Se empleó el escalón unitario 
como señal de entrada [8].

IV. RESULTADOS

A. Convergencia de la función de adaptación (FA).
En la Figura 2 pueden apreciarse los resultados ob-

tenidos en la convergencia de la función de adaptación, 
el número máximo de iteraciones ejecutadas y el error 
mínimo requerido, tanto de la metodología desarrolla 

(Alg. Des.) como de los métodos: GA, PSO, EE para: 
sistema 1, ver Fig. 2 (a); sistema 2, ver Fig.2 (b); siste-
ma 3, ver Fig. 2 (c), respectivamente. Observando que 
aunque el número de iteraciones presentada por el Alg. 
Des., respecto al GA y PSO fue mayor, este siempre 
logró converger a la mejor función de adaptación para 
todos los sistemas, ver Fig. 2(a), Fig. 2(b) y Fig. 2(c) lo 
cual, como se verá más adelante cuando se presenten las 
respuestas dinámicas de los sistemas, permitió ejercer 
el mejor control, debido a que valores demasiado altos 
de FA pueden ocasionar que el algoritmo oscile alrede-
dor de un mínimo y una convergencia muy rápida no 
garantiza que se haya dado con la solución más óptima; 
quedando en un óptimo local. Cabe destacar que el mé-
todo EE no posee criterio de parada por lo que se esta-
bleció un número finito de cien (100) iteraciones, luego 
de las cuales se elegía la iteración con el menor FA. 

Figura 2. Gráficas de Convergencia de FA vs Iteraciones: (a) Sistema 1, (b) Sistema 2, (c) Sistema 3.
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B. Definición de las matrices de peso Q y R. Entonamiento del controlador LQR. 
Con el algoritmo desarrollado se logró obtener los parámetros de Q y R del LQR, los elementos del vector de 

ganancia proporcional (K) y los elementos del vector de ganancia integral (Ki) para cada sistema como se pueden 
apreciar a continuación:

                                                                                                                                                                        (1)

                                                                                                                                                                        (2)

                                                                                                                                                                         (3)

                                                                                                                                                                         (4)

                                                                                                                                                                         (5)

                                                                                                                                                                         (6)

C. Respuesta dinámica de los sistemas a lazo cerra-
do.

Es importante notar que el controlador multivariable 
LQR no pierde control sobre la planta. Para sistemas 
MIMO donde la iteración de las variables influye en el 
desempeño del proceso también se espera que el contro-
lador actúe más rápido ya que poco esfuerzo de control 
se refleja en una respuesta más lenta y por ende mayor 

tiempo de levante y estabilización. “Suavizar” la señal 
de control, es decir, amortiguar el sobrepico debido al 
cambio de la señal de referencia (señal escalón) es una 
característica deseable en la práctica, puesto que au-
menta la vida útil del actuador en la planta. 

Los ajustes realizados al valor de referencia para el 
sistema 1, a lo largo de la simulación fueron: y1=5 a 
los 10s y y2=2 a los 56s, ver Figura 3. A pesar de la in-
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teracción existente en el accionamiento, el controlador 
logra que cada salida alcance a su respectiva referencia. 
El algoritmo desarrollado presentó la mejor respuesta.

Figura 3. Respuesta dinámica comparativa a lazo 
cerrado del sistema 1.

En el sistema 2, Los valores de referencia fueron 
y1=1, y2=25 variando a 22,5 a los 50s y para y3=50. las 
variables que presentan mayor interacción entre sí son 
nivel (y1) y composición (y2). Para la salida más im-
portante del segundo sistema estudiado (y2) el algorit-
mo desarrollado presentó el menor sobrepaso (0.19%) 
y se estabilizó a los 38,81s, como puede apreciarse en 
la Figura 4.

Figura 4. Respuesta dinámica comparativa a lazo 
cerrado del sistema 2.

Los ajustes del valor de referencia a lo largo de la 
simulación para el sistema 3 fueron y1=1 (t=15s) y2=1 
(t=50s), ver Figura 5, la respuesta de la primera salida 
(y1), el Alg. Des., tuvo un tiempo de levante de 1,86s 
con un sobrepaso de 0,016%. No se presentó sobre paso 
de la salida para el resto de los algoritmos En la se-
gunda salida se aprecia que Alg. Des., genera la mejor 
respuesta, con un tiempo de levantamiento de  1,09s y 
1,11s respectivamente estableciéndose en 3,5s Por otra 
parte los métodos PSO y EE, no lograron alcanzar la 
referencia para la segunda salida del sistema. 

D. Índice de desempeño (JLQR).
En la Tabla III se puede observar la ponderación 

que da cada método a los estados (beneficio del error, 
xTQx) y  al costo de control (uTRu) y la relación error/
costo que alcanzó minimizar más al índice de desem-
peño (JLQR).  Entre Q y R y la función que cada uno 
ejerció dentro del índice de desempeño JLQR se encon-
tró una solución de compromiso entre el rendimiento 
del controlador y su nivel de actuación. R pondera el 
valor de la secuencia de señal de actuación, es decir, 
evita que los valores de la señal de control sean muy 
grandes. Por lo tanto al minimizar JLQR se consiguió 
una ley de control que por una parte acercó el estado al 
origen lo más rápido posible pero manteniendo un nivel 
de actuación moderados. 
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Figura 5. Respuesta dinámica comparativa a lazo 
cerrado del sistema 3.
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TABLA IV. Índice de desempeño (JLQR) y términos que lo componen. Sistema 1, 2, 3.

Alg. 
Des. GA PSO EE Alg. Des. GA PSO EE Alg. 

Des. GA PSO EE

Error 
(xTQx)

936,2 1,60E+03 1,70E+03 504,7 2,50E+06 5,50E+05 6,90E+05 3,20E+06 13,5 65 544 33,5

Costo 
(uTRu)

32,9 43,4 48,5 71,8 4,70E+04 1,20E+05 7,10E+07 2,90E+08 2,5 2,7 2,5 1,8

JLQR 969,1 1,60E+03 1,80E+03 576,5 4,70E+04 1,20E+05 7,10E+07 2,90E+08 16 67,8 546,5 35,3

SISTEMA 1 SISTEMA 2 SISTEMA 3

V.CONCLUSIONES
1-Se diseñó un método para establecer los valores 

de peso de las matrices Q y R de la estrategia de con-
trol óptimo LQR en sistemas LTI  implementándose con 
una herramienta informática Matlab© y Simulink. 

2-El criterio de convergencia empleado en el algorit-
mo desarrollado ayudó a que el proceso de simulación, 
efectuado con una herramienta informática (Matlab©), 
fuera simple y amigable  en términos de tiempo ya que 
no fue necesario realizar un número elevado de simula-
ciones, lo que representaba un inconveniente a la hora 
de diseñar el control LQR. 

3-El esquema de control avanzado LQR con acción 
integral, se entonó en base a las matrices Q y R, a partir 
del algoritmo resultante de la metodología desarrolla-
da; permitiendo al diseñador balancear el compromiso 
entre respuestas rápidas y el esfuerzo de control reque-
rido; en tales condiciones se alcanzó el rendimiento óp-
timo del sistema.

4-Empleando herramientas de diseño de Matlab©, 
se han ajustado los parámetros del controlador a partir 
de una combinación de evolución y aptitud con simula-
ciones iterativas, obteniendo una respuesta suficiente-
mente precisa y poco costosa computacionalmente.

5-Los resultados demostraron que cuando el método 
desarrollado por esta investigación se utiliza para defi-
nir las matrices de peso del LQR, la respuesta dinámica 
óptima se puede lograr. 

6-La combinación propuesta de GA y PSO para 
entonar LQR da una respuesta satisfactoria de tiempo 
de levantamiento, sobrepaso, tiempo de alojamiento y 
menor ITAE. Los resultados obtenidos marcan una im-
portante mejora al aplicar el control multivariable, ya 
que existe un potencial beneficio económico asociado 
al control.

7-La investigación provee un método genérico que 
permite definir las matrices de peso  Q y R del LQR de 
manera eficiente y eficaz sin importar que tanto cono-
cimiento se tenga del sistema, puede ser aplicado en el 
control óptimo de diferentes procesos reales, al tiempo 
que asienta bases teóricas para seguir innovando en el 
campo del control óptimo a nivel de Hispanoamérica; 
actualmente muy pujante.
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