Barrionuevo et al., Predicción de propiedades mecánicas aplicando un sistema de inferencia
Salomón et al., Produ cJ ut i av ni d Sa ed g ud re al 1p ,r oF cr ea s no y me li tn Se ru oà, r me z a2 s, aJ ul laá nd Ce al as i pe r ro ad 2u c. ción
[2]M. Rinaldi, T. Ghidini, F. Cecchini, A. Brandao, and the art of machine learning models in energy systems, a
F. Nanni, “Additive layer manufacturing of poly (ether systematic review,” Energies, vol. 12, no. 7, 2019.
ether ketone) via FDM,” Compos. Part B Eng., vol. [16]G. Casalino, “Computational intelligence for smart
1
[
45, no. December 2017, pp. 162–172, 2018. laser materials processing,” Opt. Laser Technol., vol.
3]N. Li et al., “Progress in additive manufacturing on 100, pp. 165–175, 2018.
new materials: A review,” J. Mater. Sci. Technol., vol. [17]J. Mathew, J. Griffin, M. Alamaniotis, S. Kanara-
5, no. 2, pp. 242–269, 2019. chos, and M. E. Fitzpatrick, “Prediction of welding re-
4]Y. Zhu, J. Zou, and H. Yang, “Wear performance of sidual stresses using machine learning: Comparison be-
3
[
metal parts fabricated by selective laser melting: a lite- tween neural networks and neuro-fuzzy systems,” Appl.
rature review,” J. Zhejiang Univ. A, vol. 19, no. 2, pp. Soft Comput. J., vol. 70, pp. 131–146, 2018.
9
[
5–110, 2018.
5]C. Y. Yap et al., “Review of selective laser melting: ANFIS based approach for predicting the weld strength
Materials and applications,” Appl. Phys. Rev., vol. 2, of resistance spot welding in artificial intelligence de-
no. 4, 2015. velopment,” J. Mech. Sci. Technol., vol. 31, no. 11, pp.
6]X. Zhang, C. J. Yocom, B. Mao, and Y. Liao, “Mi- 5467–5476, 2017.
[18]M. F. A. Zaharuddin, D. Kim, and S. Rhee, “An
[
crostructure evolution during selective laser melting of [19]M. L. Huang, H. Y. Chen, and J. J. Huang, “Glauco-
metallic materials: A review,” J. Laser Appl., vol. 31, ma detection using adaptive neuro-fuzzy inference sys-
no. 3, p. 031201, 2019.
tem,” Expert Syst. Appl., vol. 32, no. 2, pp. 458–468,
[7]J. Zhang, B. Song, Q. Wei, D. Bourell, and Y. Shi, 2007.
“
A review of selective laser melting of aluminum allo- [20]M. Valčić, R. Antonić, and V. Tomas, “ANFIS ba-
ys: Processing, microstructure, property and developing sed model for ship speed prediction,” Brodogradnja,
trends,” J. Mater. Sci. Technol., vol. 35, no. 2, pp. 270– vol. 62, no. 4, pp. 373–382, 2011.
2
84, 2019.
[21]C.-W. Huang, L. Baron, M. Balazinski, and S.
[8]Z. Zhang, B. Chu, L. Wang, and Z. Lu, “Comprehen- Achiche, “Comprehensive model optimization in pulp
sive effects of placement orientation and scanning angle quality prediction: a machine learning approach,” PeerJ
on mechanical properties and behavior of 316L stain- Prepr., pp. 1–18, 2017.
less steel based on the selective laser melting process,” [22]B. Sen, U. K. Mandal, and S. P. Mondal, “Advance-
J. Alloys Compd., vol. 791, pp. 166–175, 2019.
ment of an intelligent system based on ANFIS for pre-
[9]O. O. Salman et al., “Impact of the scanning strategy dicting machining performance parameters of Inconel
on the mechanical behavior of 316L steel synthesized 690 – A perspective of metaheuristic approach,” Meas.
by selective laser melting,” J. Manuf. Process., vol. 45, J. Int. Meas. Confed., vol. 109, pp. 9–17, 2017.
no. July, pp. 255–261, 2019.
[23]L. H. Saw et al., “Sensitivity analysis of drill wear
[10]K. Lin et al., “Selective laser melting processing of and optimization using Adaptive Neuro fuzzy –genetic
3
16L stainless steel: effect of microstructural differen- algorithm technique toward sustainable machining,” J.
ces along building direction on corrosion behavior,” Int. Clean. Prod., vol. 172, pp. 3289–3298, 2018.
J. Adv. Manuf. Technol., vol. 104, no. 5–8, pp. 2669– [24]A. Garg, J. S. L. Lam, and M. M. Savalani, “La-
2
679, 2019. ser power based surface characteristics models for 3-D
[11]F. Bartolomeu et al., “Predictive models for physi- printing process,” J. Intell. Manuf., vol. 29, no. 6, pp.
cal and mechanical properties of Ti6Al4V produced by 1191–1202, 2018.
Selective Laser Melting,” Mater. Sci. Eng. A, vol. 663, [25]J. Zhang, P. Wang, and R. X. Gao, “Deep lear-
pp. 181–192, 2016.
12]D. Bourell, J. Coholich, A. Chalancon, and A. Bhat, sition modeling,” Comput. Ind., vol. 107, pp. 11–21,
Evaluation of energy density measures and validation 2019.
for powder bed fusion of polyamide,” CIRPAnn. - Ma- [26]N. Mathur, I. Glesk, and A. Buis, “Comparison of
nuf. Technol., vol. 66, no. 1, pp. 217–220, 2017. adaptive neuro-fuzzy inference system (ANFIS) and
13]N. Siddique and H. Adeli, Computational Intelli- Gaussian processes for machine learning (GPML) al-
ning-based tensile strength prediction in fused depo-
[
“
[
gence: Synergies of Fuzzy Logic. 2013.
gorithms for the prediction of skin temperature in lower
[
14]S. M. Chelly and C. Denis, “Introducing Machine limb prostheses,” Med. Eng. Phys., vol. 38, no. 10, pp.
Learning,” Med. Sci. Sports Exerc., vol. 33, no. 2, pp. 1083–1089, 2016.
26–333, 2001. [27]G. O. Barrrionuevo and J. A. Ramos-Grez, “Machi-
15]A. Mosavi, M. Salimi, S. F. Ardabili, T. Rabczuk, ne Learning for Optimizing Technological Properties
S. Shamshirband, and A. R. Varkonyi-Koczy, “State of of Wood Composite Filament-Timberfill Fabricated by
3
[
87
ISS NI S 2S 5N 4 22 -5 34 42 0- 13 401/ 1316-4821
UNIVERSIDAD, CIENCIA y TECNOLOGÍA Numero Especial Nº 01 2020 (pp. 81-88)