
ISSN-E: 2542-3401, ISSN-P: 1316-4821
Universidad, Ciencia y Tecnología,

Vol. 27, Núm. 121, (pp. 64-73)

64Cortez A. et al. Noise generator by free FPGA technology

https://doi.org/10.47460/uct.v27i121.755

Noise generator by free FPGA technology
Cortez, Alfredo

 https://orcid.org/0009-0003-0010-4504
cortexfredo@gmail.com

UNEXPO
 Puerto Ordaz , Venezuela

Franco, Zulay
https://orcid.org/0009-0009-5086-023X

franco.zulayegilda@gmail.com
UNEXPO

 Puerto Ordaz, Venezuela

Borjas, Jose
https://orcid.org/0009-0007-4600-4540

jworjas@gmail.com
UNEXPO

 Puerto Ordaz, Venezuela

Recibido (23/07/2023), Aceptado (07/10/2023)

Abstract. - The IceStorm project by Clifford Wolf, which involved reverse engineering of an FPGA from Lattice,
has sparked interest in developing open-source software and hardware within free FPGA communities. As a
contribution to these communities, this paper presents the development of a block generator of random
sequences with Gaussian distribution in the Icestudio environment. This block was used in the design and
implementation of a Gaussian White Noise generator on the open-source FPGA of the Alhambra II board.
Experimental tests demonstrated the similarity of the obtained distribution with the results from the
simulation in Matlab and the Fast Fourier Transform (FFT) of the generated noise signal, verifying its limited
bandwidth spectrum.

Palabras clave: Gaussian white noise, random sequences, open-source FPGA, open-source tools.

Generador de ruido utilizando tecnología FPGA libre

Resumen: El proyecto IceStorm de Clifford Wolf, en el cual se aplicó ingeniería inversa a una FPGA de la
empresa Lattice, despertó el interés en el desarrollo de software y hardware libre en comunidades de FPGA
libre. Como un aporte a estas comunidades, en este trabajo se desarrolló en el entorno de la herramienta
Icestudio un bloque generador de secuencias aleatorias con distribución gaussiana, el cual fue utilizado en el
diseño y la implementación de un generador de Ruido Blanco Gaussiano en la FPGA libre de la placa
Alhambra II. Las pruebas experimentales demostraron la similitud de la distribución obtenida con el resultado
de la simulación en Matlab y con la Transformada Rápida de Fourier (FFT) a la señal de ruido generada, se le
verificó su espectro de banda limitada.

Keywords: Ruido blanco gaussiano, secuencias aleatorias, FPGA libre, herramientas libres.

mailto:franco.zulayegilda@gmail.com
mailto:jworjas@gmail.com

I. INTRODUCTION

 FPGAs are programmable hardware devices. It is a very closed technology, surrounded by proprietary
software, where only what the manufacturer dictates can be used under the conditions they specify. There is
no room for innovation, no room for community involvement, and the internal details of the FPGA or the
format of the bitstreams are not disclosed. However, engineer Clifford Wolf reverse-engineered Lattice's iCE40
FPGAs, publishing the internal configuration and enabling the development of free-licensed software for open
use. Clifford Wolf initiated the IceStorm project and released the first set of toolchains that allow for the
conversion from Verilog to Bitstream using solely open-source tools.

 FPGAs that have undergone reverse engineering are referred to as open-source FPGAs. Communities of
open-source software development have also emerged, facilitating the design of various hardware using these
open-source FPGAs. To contribute to these communities and their development tools, this article presents the
creation of a block generator of random sequences with Gaussian distribution, developed within the
framework of the open-source tool Icestudio. The utilization of this block for the design of a noise generator
implemented in the open-source FPGA of the Alhambra II board is also presented.

 This work is organized into four sections. Firstly, the development section addresses the theoretical aspects
and methodology. The methodology describes each of the necessary blocks to assemble the proposed
system. The results section discusses the simulation results and the tests conducted on the noise signal
generator. Finally, the conclusions section summarizes the findings.

II. DEVELOPMENT

 Icestudio [1] is a visual editor for open-source FPGAs [2] that is built upon the set of tools developed by
IceStorm [3]. It performs a series of data conversions to obtain the bitstream sent to the FPGA [4], [5]. When
creating the graphical hardware design, the platform generates Verilog code. The Verilog file is then converted
to a .pcf file, which is used to build the bitstream file loaded onto the board to configure the FPGA. Icestudio
works in conjunction with Apio [6] for hardware development. Apio is a cross-platform open-source tool
written in Python, functional on Linux, macOS, and Windows. Apio provides a user-friendly command interface
to verify, simulate, synthesize, and load Verilog designs onto an open-source FPGA.

 In this research project, the hardware development on the open-source Lattice iCE40XH4K FPGA [7], housed
in the Alhambra II board [8], [9], is carried out using this software tool [10]. The Alhambra II development
board is an open-source PCB accessible to everyone, allowing the implementation of digital circuit designs
using open-source tools like Icestudio. It is suitable for educational institutions as well.

 Noise generators [11], [12] using FPGA technology [13] are designed based on applied mathematics in
probability and statistics, mainly focused on random number generation [14], [15]. This article presents an
appropriate method for designing noise generators on an FPGA, utilizing the generation of pseudo-random
numbers using linear feedback shift registers (LFSR) [16], [17], and applying the Central Limit Theorem [18] for
obtaining random signals with a normal or Gaussian distribution.

III. METHODOLOGY

 A. Random sequence generator with Gaussian distribution.

 A 12-bit LFSR counter was described in the hardware description language Verilog, as shown in Figure 1. The
number of states or samples produced by the 12-bit LFSR is 4,095 (2 12 -1). The sequence of the LFSR does
not include state 0 because this combination locks the sequence and prevents it from advancing due to XOR
feedback with logical zero inputs. On the left side of Figure 1, the parameters required for the configuration
and operation of the block are displayed. Each parameter is described below:

ISSN-E: 2542-3401, ISSN-P: 1316-4821
Universidad, Ciencia y Tecnología,

Vol. 27, Núm. 121, (pp. 64-73)

65Cortez A. et al. Noise generator by free FPGA technology

66

 clk: This is the internal clock signal that controls the FPGA. On the Alhambra II board, it is set to 12 MHz.
Frec: This parameter configures the speed of the generated random sequence, also known as the
sampling period of the LFSR.
seed [11:0]: This value, ranging from 0 to 4095, is input by the user to load the initial value or seed of the
LFSR.
load: This pulse is received along with the value "seed [11:0]" to load the seed value.
enable: This input allows turning the LFSR counter on or off.

ISSN-E: 2542-3401, ISSN-P: 1316-4821
Universidad, Ciencia y Tecnología,

Vol. 27, Núm. 121, (pp. 64-73)

Fig. 1. Implementation of the 12-bit LFSR counter described in Verilog language under the Icestudio environment.

 Figure 2 presents the block diagram of the 12-bit LFSR counter generated in Icestudio.

Fig. 2. Fig. 2. LFSR-12-bit counter block, generated in Icestudio.

 Since LFSR counters produce a sequence of uniformly distributed samples, a conversion technique is
necessary to transform the samples into a routine or Gaussian distribution. To achieve this, the central limit
theorem was applied, which states that the average value of random variables with a specific distribution
converges to new random variables with a Gaussian distribution. For the Gaussian distribution generator
block, four LFSR counter blocks were used, as shown in Figure 3. These blocks take the results of their random
samples to a block responsible for calculating the average value in each produced sequence. First, the sum of
the four samples is calculated, and then the result is right-shifted by 2 bits to obtain the division by 4.

 The operation for calculating the average value performed by the block is as follows:

Cortez A. et al. Noise generator by free FPGA technology

 Piaget en 19 To the left of the four LFSR blocks, there is a seed value loading block responsible for assigning a
different seed value to each LFSR counter. When the user sends a seed value, this block receives it and loads it
into an internal LFSR counter that generates random sequences at the system speed, i.e., 12 MHz. Every 64
clock periods, a new random seed value is sent to each LFSR counter block. It is essential to highlight the
purpose of this block since assigning the same seed value to each counter would result in the average value
being equal to the produced value of the random sequence. In other words, the random number generator
would retain the same uniform distribution, and applying the central limit theorem with the average value
would have no effect. Figure 4 displays the block for generating random sequences with Gaussian distribution
generated in Icestudio.

67

ISSN-E: 2542-3401, ISSN-P: 1316-4821
Universidad, Ciencia y Tecnología,

Vol. 27, Núm. 121, (pp. 64-73)

Fig. 3. . Implementation of the block for generating random sequences with Gaussian distribution described in
Verilog language under the Icestudio environment.

Fig. 4. Block for generating random sequences with Gaussian
distribution, generated in Icestudio..

Cortez A. et al. Noise generator by free FPGA technology

68

ISSN-E: 2542-3401, ISSN-P: 1316-4821
Universidad, Ciencia y Tecnología,

Vol. 27, Núm. 121, (pp. 64-73)

 B. Noise signal generator.

 As an immediate application of the designed block, it was used to create the noise-generating equipment. For
this purpose, the block diagram shown in Figure 5 was proposed. Its implementation was carried out using the
Alhambra II board, which, in addition to containing the free Lattice iCE40XH4K FPGA, includes an FTDI FT2232H
IC for serial communication. This IC is required to convert the data sent serially via USB into a TTL signal that
the FPGA can understand in UART communication. The FTDI block receives the generator's adjustment
parameters sent by the user from a computer in serial form and delivers them to the FPGA. The user-sent
adjustment parameters include the voltage, frequency, and seed value for generating random sequences. A
12-bit digital-to-analog converter (DAC) will take samples from the random sequences and convert them into
an analog signal, then pass through the bipolar configuration stage for noise signal adjustment. This stage
receives the "Vref" parameter from a 4-bit DAC for amplitude adjustment. Finally, the generated noise will
reach a mixing network to contaminate signals additively.

Fig. 4. Block diagram of the noise-generating equipment..

 The construction of this design under the Icestudio environment can be seen in Figure 6. The Icestudio tool
library includes a block created by the open-source community that allows the reception of data sent in serial
form. In this project, that block was used to receive the sent parameters, and a separate block was designed to
organize and load the voltage, frequency, and seed value parameters into the Gaussian random sequence
generator block. In Figure 6, it can be observed that the pins "DD3, DD2, DD1, DD0" were designated as
outputs for adjusting the amplitude of the noise signal in conjunction with an externally connected 4-bit DAC.
The pins "D0...D11" were selected for the digital output of the noise signal.

Fig. 6. Design of the noise generator under the Icestudio environment, indicating the “RX” serial reception input port and
the output ports of the Alhambra II board.

Cortez A. et al. Noise generator by free FPGA technology

69

ISSN-E: 2542-3401, ISSN-P: 1316-4821
Universidad, Ciencia y Tecnología,

Vol. 27, Núm. 121, (pp. 64-73)

 Figure 7 shows the implementation of the block for organizing and loading the voltage, frequency, and seed
value parameters under the Icestudio environment.

Fig. 7. Implementation of the block to organize and load the parameters of voltage, frequency, and seed value under the
Icestudio environment .

 Table I displays the resources consumed in the FPGA for the implemented Gaussian random sample
generator design.

Table 1. Results of the resources used in the FPGA ICE40XH4K

 The DAC7541 integrated circuit was used as a DAC converter, allowing a 12-bit input resolution for converting
the random samples to analog signals. To control the amplitude of the noise signal, a 4-bit DAC converter was
implemented using the R-2R resistor ladder network in voltage-summing mode.

 Under the Visual Studio 2019 environment, a GUI was developed to manipulate and interact with each of the
parameters required by the noise generator. It consists of a program window organized into four divisions for
control organization, as shown in Figure 8. The NOISE area displays the name of the generated noise, in this
case, Gaussian white noise. The DISTRIBUTION area allows users to observe the distribution variation adjusted
by interacting with the amplitude parameter. The PARAMETERS area contains forms that allow for manipulating
the noise parameter data. And in the CONNECTION area, some controls enable establishing a connection with
the board.

Cortez A. et al. Noise generator by free FPGA technology

70

ISSN-E: 2542-3401, ISSN-P: 1316-4821
Universidad, Ciencia y Tecnología,

Vol. 27, Núm. 121, (pp. 64-73)

 IV. RESULTS

 A. Simulation of the Gaussian Random Sequence Generator Block

 The design of the Gaussian random sequence generator block, developed in Icestudio, was verified by
conducting a simulation in Apio IDE with its test bench. The data obtained from the simulation was exported
and plotted in Matlab for better visualization. This result was compared with those obtained from a Gaussian
random number generator designed in Matlab, with the same characteristics as the one implemented in
Icestudio. As shown in Figure 9, the distribution obtained from the testbench samples closely approximates
the result from the Matlab script design.

fig. 8. GUI Window Interface.

fig. 9. (a) Histogram of the data obtained in the Celery IDE simulator and exported to Matlab to observe its distribution. (b)
Histogram of the Gaussian distribution of the generator samples described in Matlab.

 B. Noise Generator Testing

 For these tests, square wave and sine wave signals provided by a function generator were used.

 With Square Wave Signal: Noise was added to a square wave signal with an amplitude of 2.04 Vpp and a
frequency of 1 kHz. The result can be seen in Figure 10, where (a) represents the signal without noise, (b)
represents the signal with 0.412V of noise, and (c) represents the signal with 0.825V of noise.

Cortez A. et al. Noise generator by free FPGA technology

71

ISSN-E: 2542-3401, ISSN-P: 1316-4821
Universidad, Ciencia y Tecnología,

Vol. 27, Núm. 121, (pp. 64-73)

 With Sinusoidal Signal: Noise was added to a Sinusoidal Signal with an amplitude of 1.88Vpp and a frequency
of 1kHz. The result can be seen in Figure 11, where (a) represents the signal without noise, and (b) and (c)
represent the signal with noise at 10kHz and 100kHz, respectively.

fig. 10. Square Wave Signal: (a) No Noise, (b) Signal with 0.412V Amplitude Noise, and (c) Signal with 0.825V Amplitude Noise.

fig. 11. Square Wave Signal: (a) No Noise, (b) Signal with 0.412V Amplitude Noise, and (c) Signal with 0.825V Amplitude Noise.

Cortez A. et al. Noise generator by free FPGA technology

72

ISSN-E: 2542-3401, ISSN-P: 1316-4821
Universidad, Ciencia y Tecnología,

Vol. 27, Núm. 121, (pp. 64-73)

 In the experiments conducted by contaminating external signals with noise, the effect on the signal was
noticeable as the noise amplitude increased. The distortion effect caused by high-frequency noise on a signal
was also observed.

 To analyze the frequency spectrum of the generated noise, the Fast Fourier Transform (FFT) was used. Tests
were conducted at different noise frequencies. Firstly, a test was performed at 100kHz with the noise
amplitude set to 1.03V. The spectral density of the noise for this case can be seen in Figure 12(a). Secondly, a
test was conducted at a frequency of 50kHz, with the noise amplitude also set to 1.03V. The spectral density of
the noise for this case can be seen in Figure 12(b).

 In this experiment, it was observed that at frequencies higher than the configured frequency in the
equipment, the power density of the spectrum decreases as the frequency range increases. Furthermore, it
was observed that the power density of the noise is contained in frequencies lower than the configured
frequency, indicating that the noise is band-limited.

 CONCLUSIONS

 All the available open-source software for hardware development is beneficial for those who cannot afford
licensed software. Icestudio offers not only economic advantages but also ease of use due to its capabilities
and tools for developing any digital electronic circuit on a free FPGA. The Icestudio platform proves to be a
good option for graphically describing hardware to be implemented in an FPGA. It provides the flexibility to
create necessary blocks for different purposes using free FPGA communities or code blocks described in the
Hardware Description Language (HDL) Verilog.

 The Alhambra II development system can be used to study free FPGAs. Random samples with Gaussian
distribution were successfully generated and implemented using the Hardware Description Language (HDL)
Verilog. The necessary blocks were also designed to control and receive parameters sent from a graphical
interface on a PC to the noise generator equipment.

 In the experimental results, square and sine wave signals from a signal generator were contaminated,
demonstrating the effect and distortion of the implemented equipment's noise on these signals.

Cortez A. et al. Noise generator by free FPGA technology

Fig. 12. (a) Frequency spectrum of the noise signal at 100kHz. (b) Frequency spectrum of the noise signal at 50kHz.

73

ISSN-E: 2542-3401, ISSN-P: 1316-4821
Universidad, Ciencia y Tecnología,

Vol. 27, Núm. 121, (pp. 64-73)

REFERENCES

[1] J. González, "GitHub," [Online]. Available: https://github.com/Obijuan/digital-electronics-with-open-FPGAs-
tutorial/wiki/V%C3%ADdeo-2:-%C2%A1Getting-started-Icestudio !. [Last access: 2021].
[2] J. González, «FPGAwars. Exploring the free side of FPGAs,” 2019. [Online]. Available: http://bit.ly/2Y5KBnZ.
[Last access: 2021].
[3] C. Wolf, "Project IceStorm," [Online]. Available: https://clifford.at/icestorm. [Last access: 2020].
[4] J. González, « Introduction to FPGAs.,» (2016). [Online]. Available: http://obijuan.github.io/intro-fpga.html.
[5] J. González, "FPGA Wars," [Online]. Available: http://obijuan.github.io/intro-fpga.html. [Last access: 2021].
[6] J. González, "GitHub," [Online]. Available: https://github.com/FPGAwars/apio-ide. [Last access: 2021].
[7] "latticesemi,"
[Online]. Available:
http://www.latticesemi.com/˜/media/LatticeSemi/Documents/DataSheets/iC/iCE40LPHXFamily DataSheet.pdf.
[Last access: 2020].
[8] J. González, "GitHub," [Online]. Available: https://github.com/FPGAwars/Alhambra-II-FPGA.. [Last access:
2021].
[9] I. González, “Digital System for FPGA communications,” National Polytechnic Institute, Culhuacan Unit, DF,
Mexico, 2008.
[10] L. Tovar, "Implementation of PID Controller and Discretized Plant in Free FPGA," Undergraduate thesis,
Department of Electronics, UNEXPO, Puerto Ordaz, Edo Bolívar, Venezuela, 2019.
[11] E.Trabes, D. Costa and C. Sosa, «Signal generator with arbitrary waveform and noise using DDS in FPGA,»
IV Applied Microelectronics Congress , San Luis, Argentina., 2013.
[12] J. Márquez, Instrumentation and Signals Course, Mexico: Center for Applied Sciences and Technological
Development, National Autonomous University of Mexico (UNAM), 2012.
[13] A. Martínez, “Design and implementation of a configurable Jammer in FPGA,” Universitat Politécnica de
Valencia, Valencia, Spain, 2020.
[14] A. Calvó, “Random Number Generator,” Rovira i Virgili University, Tarragona, Catalonia, Spain, 2011.
[15] L. Azzinnari, A. Mozsáry, K. Krol, and V .Porra, “A Simple Digital FPGA Pseudo-Chaos Generator,” from
European Conference on Circuit Theory and Design , Espoo, Finland, 2001.
[16] Z. Franco, “digitales2unexpo.wordpress,”
[Online]. Available: https://digitales2unexpo.wordpress.com/. [Last access: 2020].
[17] R. J. Tocci, Digital Systems, Tenth Edition, Mexico.: Prentice Hall, 2007.
[18] J. López, "economipedia," [Online]. Available: https://economipedia.com/definiciones/teorema-central-del-
limite.html. [Last access: 2020].
[19] XILINX, Application note: XAPP 465 (V1.1), p. 1-17.
[20] XILINX, Application note: XAPP 052 (Version 1.1), p. 1-6.

Cortez A. et al. Noise generator by free FPGA technology

