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Abstract. - This paper explores the computational aspects of simulation and modeling applied to the solution
of the Heaviside equation, considering the relevance of the stability and convergence of the solutions. For this
purpose, a second-order finite difference scheme was implemented as the primary approach for studying
atmospheric discharges (ATDI). The programming language used was Matlab, which facilitated calculating the
induced currents in the study scenario. The centered, forward, and backward finite difference approaches
were considered for the numerical implementation. System validation tests were performed to demonstrate
the effectiveness of the design and convergence to the second order with the centered difference approach.
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Criterios de convergencia y estabilidad para soluciones numéricas de ecuaciones
diferenciales parciales en ciencia e ingeniería

Resumen: En este trabajo se presenta una exploración de los aspectos informáticos de la simulación y el
modelado aplicados a la resolución de la ecuación de Heaviside, considerando la relevancia de la estabilidad y
convergencia de las soluciones. Para ello se implementó un esquema de diferencias finitas de segundo orden
como enfoque principal para el estudio de las descargas atmosféricas. El lenguaje de programación utilizado
fue Matlab, lo que facilitó el cálculo de las corrientes inducidas en el escenario de estudio. Para la
implementación numérica se consideraron los enfoques de diferencia centrada, diferencia hacia adelante y
diferencias finitas hacia atrás. La validación del sistema se hicieron pruebas que demuestran la efectividad del
diseño y la convergencia al segundo orden, con el enfoque de diferencia centrada. 
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I. INTRODUCTION

  The stability and convergence of differential equation solutions represent two essential pillars in any
simulation process. Unfortunately, on many occasions, the numerical solution stability does not receive the
necessary attention or is only superficially addressed in specific experiments. However, this study focuses
rigorously on these aspects of vital importance in the context of simulations. The analysis focuses on the
propagation of waves related to the phenomenon of atmospheric discharges, a problem that directly impacts
electric utilities. The influence of this phenomenology on the extensive network of transmission lines and
devices in electrical substations causes interruptions in power distribution and results in economic losses due
to sharp fluctuations in current and voltage magnitudes, significantly when they exceed the isolation
thresholds of such devices.

  The intricate nature of this phenomenon complicates obtaining analytical solutions for the equations that
describe it, giving rise to the imperative need to resort to numerical models supported by increasingly
advanced software and hardware. Various numerical methods have paved the way for solving several
applications linked to atmospheric discharges, thus obtaining highly accurate numerical solutions. Extending
previous approaches, this study delves into the computational aspects of significant relevance in the
simulation process. In particular, special emphasis is given to convergence and stability tests, whose conclusive
results ensure the reliability of the solutions obtained.

   This work sheds light on the critical importance of stability and convergence in simulations and contributes
to a more adequate understanding and management of the issues associated with lightning strikes. By delving
deeper into these essential aspects, a solid foundation is laid for future research and advances in mitigating
the negative impacts of this natural electrical phenomenon.

II. THE PHYSICAL MODEL AND THE MATHEMATICAL MODEL

  The system under analysis is a relationship between the atmosphere and the earth, represented as a
cylindrical condenser. The separation between these entities is defined by a discharge channel, which is
assumed straight and without deviations. The cylindrical condenser has a distance of 1 km between its
components, while the discharge channel has a diameter of approximately 20 cm. During the simulation of
this scenario, a characteristic altitude of 1000 m is considered. This altitude is divided into 250 segments, each
with a time interval Δt of 0.5 µs, for a detailed representation of the process. The system of equations used in
this work is the one proposed in references [1] and [2], from which (1) and (2) are extracted as main equations
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where V(x,t) is the cloud voltage, I(x,t) is the discharge current and R, L, C and G are the resistance of the
channel, the inductance associated with the discharge, and the inductance associated with the discharge, the
capacitance and G the conductance, respectively. Combining equations (1) and (2) yields the well-known
telegrapher's equation for current:
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  It is easy to show that equation (3) has the same form for the lightning voltage. In this case, it is solved
numerically to determine the return discharge current with the appropriate initial and boundary conditions. In
addition to the actual parameters that allow the atmospheric discharge to be accurately described, it should
be noted that this equation has been solved on other occasions, and the authors make assumptions that
greatly simplify it [6].

III. NUMERICAL DEVELOPMENT AND IMPLEMENTATION

  For the discretization of equation (3), the basic idea of finite differences is to replace continuous space-time
with a discrete set of points. The time step between two consecutive levels is denoted ∆t, and the distance
between two adjacent points in space ∆x [3].

 The next step is to replace the differential equations with discrete equations. This is achieved by
approximating the differential operators by their corresponding finite differences and considering the function
values at adjacent points in the mesh. In this way, an algebraic equation is obtained at each point of the grid
for each term of the differential equation. These equations involve the function values at the moment
considered and their nearest neighbors. Using the approximations obtained by Taylor's series development,
its corresponding discretization replaces each differential operator in equation (3), and the following is
obtained.

9
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  This equation has the property that it involves only two values of the wave function at the last time level; the
value        , then, can be cleared in terms of values at previous times to obtain the equation of the discretized
telegrapher, which will later be implemented in Matlab.

 To numerically implement this equation, it is necessary to specify the boundary and initial condition. The
current in the cloud is assumed to be a constant value taken as zero. Therefore, the cofounder's condition is

where h is the height of the cloud where the discharge starts, at t = 0, the current distribution is assumed to
be a constant value. Therefore, the initial condition is
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        A. The Algorithm
  

  The algorithm for finding the numerical solution is described in Figure 1.

10

ISSN-E: 2542-3401, ISSN-P: 1316-4821
Universidad, Ciencia y Tecnología, 

Vol. 28, Núm. 122, (pp. 7-16)

Figure 1. The algorithm for finding the numerical solution.
Source: Authors.

  Equation (4) is implemented numerically in MATLAB. In the case of the telegrapher's equation, the input
parameters R, L, C, and G are needed, which are assumed to be known in the discharge channel. The values
used in this case are shown in Table 1.

Table 1. Electrical parameters of the discharge channel of an ATDI. These parameters were
varied to validate the code, and the impact on the solutions was not representative.

        B. Stability and convergence analysis
  

  For any simulation, stability and convergence tests are necessary, among other aspects, because of the
following [3,4,5]:

When applying finite difference methods involving numerical solutions of second-order differential
equations, in addition to considering errors due to rounding and series truncation, it is essential to
remember that finite difference expressions are derived from a Taylor series approximation up to the
second term. This approximation introduces an error in the calculations that need to be controlled.
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equations, in addition to considering errors due to rounding and series truncation, it is essential to
remember that finite difference expressions are derived from a Taylor series approximation up to the
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There are also errors associated with the limitations of fitting the physical model to accurately describe the
natural system and the constraints imposed by the boundary conditions. Convergence and stability
validation verify the correctness of the approximations made by finite differences in the discretization
process.

Methods are available to evaluate the convergence of a code when analytical solutions are known. In this
study, the electrical parameters are considered to achieve a sufficiently refined mesh, thus allowing code
convergence in as few iterations as possible. To achieve this, the CFL condition is applied to ensure that
the mesh will enable us to obtain a solution closer to reality.

A particular case arises when time-stepping schemes are used as a numerical solution method.
Consequently, in many simulations, the time step must be smaller than a characteristic value to prevent
the code from becoming unstable and producing incorrect results. This constraint is commonly called the
numerical propagation speed in the CFL condition.

To assess stability, it is sufficient to ensure that the solutions of the differential equations do not exhibit
oscillations, which can be determined by observing the graphs representing the time evolutions. This
requires allowing the time-dependent variables to evolve over a prolonged period to verify that they do
not exhibit unexpected oscillations or fluctuations.

Convergence refers to how the numerical solution approaches a known or actual analytical solution. In
situations where the analytical solution is unknown, it is possible to use an iterative approach to evaluate
convergence. The numerical value of the first iteration is used as the analytical approximation and
compared to the numerical value of the second iteration. Then, the value of the second iteration is taken
as the analytical approximation and compared with the numerical value of the third iteration, and so on.
This approach constitutes one of the tests implemented to validate the code in this study.

   To converge the code, we proceeded as follows: since the finite difference approximation method used in
the Taylor series development is of second order, we postulate that the error is also of second order at ∆x:
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  By applying logarithm and its properties to both members of the equation (7): 

  Equation (8) has a line of slope equal to two. If from the graph Vs the error between a known analytical
solution and the numerical solution found for equation (4) is obtained. A slope approximately equal to two
implies that the numerical solution converges to the analytical solution. In this case, a general expression for
the convergence calculation given by the L2 norm was used for convergence [3,4,11]
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where fij is the analytical solution, and Fij is the numerical solution obtained, and L2 = Error. Figure 2 shows the
two current wave models used to perform this convergence. That is the analytical solution and the numerical
solution obtained.

 The waveform generated with the Heidler function [8,9,10] was selected as the analytical solution and
compared with the numerical solution of the telegrapher's equation to estimate the convergence error. Figure
3 shows a line of average slope m=1.9 using least squares for linear regression, with differential steps of 3
microseconds. The numerical solution converges to the analytical solution to the second order of
approximation.

Figure 2. Numerical and analytical discharge current waveforms.

Figure 3. Result of the average line using least squares for convergence.
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  The particular case of a lossless line (R=G=0) leads to a differential equation identical to the string equation
and whose algorithm is straightforward to implement numerically.  

   So that you know, the solution of equations (10) and (11) can be used to verify the convergence of the code
in the limits of R=G=0. To verify the validity of the solution of the telegrapher's equation (3), in codes where the
equation is solved with R=G=0, the current's numerical solution coincides with that of equation (11). A mesh
refinement was performed for N=1000, 10000, 200000, and 1000000, and the code remained stable and
convergent for all meshes, only with the centered finite difference scheme. With the forward and backward
finite difference schemes, the code is unstable for coarse, medium, and fine meshes.

IV. RESULTS

  Another test and validation of the code elaborated in MATLAB was a series of tests performed on the code by
varying the parameters. A series of plots are shown for G=0 and G≠0 for different numbers of points to change
the size of the spatial differentials and test the previously exposed stability criteria. The fact that the
conductance parameter is zero implies non-real solutions since there are losses in the real lines. Meanwhile,
when G≠0, the solutions are closer to reality. In the case of Figure 4, for several points N≥1000, the code starts
to break the CFL condition, and oscillations are appreciated, representing an atypical behavior for a
phenomenon of these characteristics. For a N≤200, the CFL condition (ratio between Δt and Δx) is violated.

Figure 4. Numerical solution for different values of the number of mesh points N and the conductance parameter, G=0.
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  Figure 5 compares the waves obtained numerically with the code in Matlab (both for G=0 and G≠0) and the
analytical solution. It can be noticed the difference with G=0. This is because the discharge channel's
dissipative characteristics are not considered. The solutions closest to reality are obtained when G≠0.

Figure 5. Comparison between the numerical solutions for the conductance parameter G=0 and G≠0 and the analytical
solution (Heidler). This plot was obtained with a run of the program in Matlab..

  Once the implemented numerical solution was compared with the analytical solution and the codes were
validated, we simulated different models. Figure 6 shows the current calculated from Equation (3) for different
values of G. In all cases, the start-up time and the differentials were the same. What differentiates them is the
attenuation and the stability of the code.

Figure 6. Numerical solution for the discharge current with different values of the conductance parameter G..
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  Figure 7 shows a series of plots for different values of the discharge channel resistance, R, both for G=0, to
simulate the different resistivities present in the atmosphere by having areas with higher humidity and
pollution than others.

Figure 7. Numerical solution with different values of channel resistance R and conductance parameter G=0.

CONCLUSIONS

It has been possible to create software in Matlab designed to be executed in Windows environments,
which has allowed an exhaustive analysis of the stability and convergence in the numerical resolution of
the Heaviside equation. The results have shown that this software is a reliable tool since it demonstrates
stability and convergence of second order, which is consistent with the finite difference scheme applied in
discretizing the Heaviside equation. A prominent feature of the software is its ability to maintain the CFL
condition during the evolutionary process, thus guaranteeing reliable and consistent results.

This study is valuable to simulations and numerical solutions of partial differential equations. One of the
most outstanding aspects lies in the meticulous validation and rigorous tests to which the developed code
has been subjected. Specifically, the stability and convergence tests have yielded highly satisfactory results,
supporting the efficiency and reliability of the software in question.

It is essential to note that the convergence criteria, a fundamental part of this analysis, are intrinsic to the
nature of the simulated physical system and its actual behavior. These criteria are intricate and are
significantly influenced by the experience of the simulator or the research team in charge regarding their
specific knowledge of the problem in question. Proper consideration of these criteria not only supports the
accuracy of the results obtained but also provides a deeper insight into the fidelity of the simulation to the
real system.

Finally, this work has not only resulted in high-performance and robust software for the numerical solution
of differential equations but has also provided several valuable lessons on the importance of validation,
stability, and convergence testing, as well as the influence of convergence criteria on the quality and
reliability of the results. These findings add to the continued growth of the field and open doors for future
research and developments in numerical simulations.
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