Abstract
Kohonen's self-organized maps (SOM) are a type of artificial neural networks of unsupervised learning that allows the identification of patterns between data by measuring the distances between them to form clusters by meeting one representative for each group. In this article we present the SOM algorithm to represent data maps, we will use a program in Matlab with the tool SOM toolbox to carry out the classification of three types of wheat seeds, based on the attributes of the same.
Keywords: SOM, training, artificial neural network, database, classification.
References
[1] T. York, A. Ukpong, S. Mylvaganam and Y. Ru, “Parameter estimation from tomographic data using self-organising maps”, 2012 IEEE International Conference on Imaging Systems and Techniques Proceedings, 2012.
[2] F. González and N. Obregón, “Self-organizing maps of Kohonen as a river clustering tool within the methodology for determining regional ecological flows ELOHA”, ISSN 0123-2126. Ingeniería y Universidad [Online] Available: http://oai.redalyc.org/articulo. oa?id=47728826003 [Last access: May 28, 2017].
[3] A. Yasar, E. Kaya and I. Saritas, “Classification of Wheat Types by Artificial Neural Network”, International Journal of Intelligent Systems and Applications in Engineering, vol. 4, nº 1, pp. 12-15, 2016.
[4] M. Chang,Y. Horng and H. Jia-Sheng, “Evolutionary self-organizing map”, 1998 IEEE International Joint Conference on Neural Networks Proceedings, IEEE World Congress on Computational Intelligence (Cat.No.98CH36227).
[5] A. Akhterov, O. Lezina and A. Shastina, “Diagnostics of development of organizational and managerial competencies of the engineers using the self-organizing kohonen maps”, Automation and Control in Technical Systems, no. 42, 2013.
[6] E. Atenogenes, “Laboratorio de Dinámica no Lineal”, [Online] Available: http://www.dynamics.unam.edu.mx [Last access: May 28, 2017].
[7] I. Callejas, J. Pineros, J. Rocha, F. Hernández and F. Delgado, “Implementación de una red neuronal artificial tipo SOM en una FPGA para la resolución de trayectorias tipo laberinto”, 2013 II International Congress of Engineering Mechatronics and Automation (CIIMA), 2013.
[8] A. Gómez, “Redes neuronales artificiales: The Self Organizing Maps (SOM) para el reconocimiento de patrones”, Institución Universitaria Los Libertadores, vol. 1, nº 1, 17 diciembre, 2013.
[9] S. Gálvez, “SELF-ORGANIZING MAPS” Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Eléctrica, Santiago, 2014.
[10] J. Vesanto, J. Himberg, E. Alhoniemi and J. Parhankangas, “Laboratory of Computer and Information Science Adaptive Informatics Research", Helsinki University of Technology, Finland, 1-60, 2000.