GENETIC ALGORITHMS AND PARTICLE SWITCHING OPTIMIZATION TO DEFINE THE MATRICES OF WEIGHT OF THE LINEAR QUADRATIC REGULATOR METHODOLOGY
PDF (Español (España))
HTML (Español (España))

Keywords

Quadratic linear regulator
Q and R matrices
Genetic algorithms
Particle swarm optimization

How to Cite

Lorbes, M. (2019). GENETIC ALGORITHMS AND PARTICLE SWITCHING OPTIMIZATION TO DEFINE THE MATRICES OF WEIGHT OF THE LINEAR QUADRATIC REGULATOR METHODOLOGY. Universidad Ciencia Y Tecnología, 23(95), 95-102. Retrieved from https://uctunexpo.autanabooks.com/index.php/uct/article/view/252

Abstract

The linear quadratic regulation problem, its modern control strategy where controller parameters are found that minimize unwanted deviations through the configuration of the weight matrices Q and R; taking care of the tedious work done by the specialist in the optimization of the controller. However, there are no simple analytical methods that help the designer to define the values of these matrices, which are a function of the system, the control that is desired and the efforts of the control variables; being fundamental knowledge of the process on the part of the engineer. Classic approaches such as trial and error, Bryson's method, and pole allocation are labor intensive, time-consuming and do not guarantee the expected performance. This research proposed a methodology based on genetic algorithms and optimization by particle swarm to define the weight matrices Q and R. Achieving optimal controllers design easily, fast and with only knowing basically the system to control.

Keywords: Quadratic linear regulator, Q and R matrices, genetic algorithms, particle swarm optimization

References

[1]W. J., Arcos and A., Tovar. “Control óptimo LQR de un exoesqueleto de marcha”. Intekhnia, vol. 7, no. 2, pp. 119-132, Julio 2012.

[2]S. A. Ghoreishi and M.-A. Nekoui. “Optimal weighting matrices design for LQR controller based on genetic algorithm and PSO”. AMR, vol. 443, no. 440, pp. 7546– 7553, Enero 2012.

[3]S. Mobayen, A. Rabiei, M. Moradi and B. Mohammady. “Linear quadratic optimal control system design using particle swarm optimization algorithm”. Int. J.
Phys. Sci., vol. 6, no. 30, pp. 6958 – 6966, Noviembre ,2011.

[4]H. González. “Modelado, simulación y control de un sistema de generación eólico”. M.S. Tesis, UDES, Bucaramanga, SAN, Colombia, 2008.

[5]A. I. Abdulla, J. M. Ahmed and S. M. Attya. “Genetic algorithm (GA) based optimal feedback control weighting matrices computation.” Al-Rafidain Engineering, vol. 21, no. 5, pp. 25- 33, Octubre 2013.

[6]D. E. Kirk (2004). Optimal control theory. An introduction. New York: Dover Publicaction, Inc, 2004.

[7]K. Ogata. Ingeniería de Control Moderna. 4ta ed., Minnesota: Pearson Prentice Hall, 2007.

[8]B. Kuo. Sistemas de Control Automático. 7ma ed. México: Prentice Hall Hispanoamericana, 1996.

[9] H. Bory P., F. Chang M., and J. E. Santos T. “Diseño y evaluación de un controlador de posición óptimo para electro mecanismo multivariable”. Ciencias Holguín, vol. 22, no. 1, pp. 1-14, Enero 2016.

[10]G. R Lanza S. (2013, Agosto) Control Multivariable para un evaporador de circulación forzada mediante realimentación del vector de estado. [Online]. Available: http://mriuc.bc.uc.edu.ve/handlet/123456789/1843  [Last access: August 15, 2019]

PDF (Español (España))
HTML (Español (España))

Downloads

Download data is not yet available.