DATAMART BASED ON THE STAR MODEL FOR THE IMPLEMENTATION OF KEY PERFORMANCE INDICATORS AS BIG DATA OUTPUT
PDF (Español (España))
HTML (Español (España))

Keywords

datamart
data warehouse
databasedatabase
business intelligence

How to Cite

Zerpa, H., Garcia, R., & Izquierdo, H. (2020). DATAMART BASED ON THE STAR MODEL FOR THE IMPLEMENTATION OF KEY PERFORMANCE INDICATORS AS BIG DATA OUTPUT. Universidad Ciencia Y Tecnología, 24(102), 47-54. https://doi.org/10.47460/uct.v24i102.342

Abstract

In a production environment, decision-making processes are important because of the impacts they have on other processes. To this end, it is convenient to access the information stored in the large data warehouses through a less complex model, the Datamarts. A Datamart allows optimizing the process of information use, through the grouping of the factors of interest that affect a particular fact or facts. Therefore, a research of the projective type was carried out, establishing as a general objective the development of a Datamart based on the star model, oriented towards the models of agricultural production systems. The optimization of the extraction and visualization process of the data stored in the Datamart was carried out through the implementation of an OLAP cube. Using software tools such as SQL Server Management for the design of the database, the integrated development environment Visual Studio for the execution and design of the extraction, transformation and data loading processes, and Power BI as a Business Intelligence tool for the generation of reports and dynamic visualizations of the established indicators.

Keywords: datamart, datawarehouse, database, business intelligence.

References

[1].B. Mazon, A. Pan and R. Tinoco. Análisis de Datos Agropecuarios. 1ra. Ed. Ecuador: UTMACH, 2018.

[2].A. De Mauro, M. Greco and M. Grimaldi. “Una definición formal de Big Data basada en sus características esenciales. Revisión de la biblioteca”, Library Review, vol. 65 no. 3, pp. 122-135, Abril 2016.

[3].P. Muñoz. “Desarrollo de una arquitectura de Big Data para registros mercantiles”. Trabajo de grado, UCV, Caracas, 2016.

[4]. Z. Jourdan, R.K. Rainer and T.E. Marshall. 2Business Intelligence: An Analysis of Literature. Information System Management”, IEEE Engineering Management Review, vol. 25, no 2, p. 121-131, Marzo 2008.

[5].W.H. Inmon. Building the Data Warehouse. 3ra. ed. New York: Wiley, 2002.

[6].C. J. Date. Introducción a los sistemas de bases de datos. 7ma. ed. México: Pearson Educación, 2001.

[7]Cubo OLAP. (2020, mayo 10). Wikipedia. [Online]. Available: https://es.wikipedia.org/wiki/Cubo_OLAP. [Último acceso: 13 de marzo de 2020].

[8]B.R. Dario. Data Warehousing: Investigación y sistematización de conceptos. Hefesto: Metodología propia para la construcción de un Datawarehouse. 1ra. ed. Cordoba: Argentina, 2010.

https://doi.org/10.47460/uct.v24i102.342
PDF (Español (España))
HTML (Español (España))

Downloads

Download data is not yet available.