Abstract
Customer churn is a relevant problem faced by service companies and that can generate significant economic losses. Identifying the elements that lead a customer to stop consuming a service is a complex task. However, through their behavior, it is possible to estimate a churn probability associated with each one of them. This research applies data mining to predict customer churn in a natural gas distribution company, using two machine learning techniques: neural networks and support vector machine. The results show that by applying these techniques it is possible to identify customers with the highest probability of churn to take retention actions timely and focused, minimizing the costs associated with the error in the identification of these customers.
Keywords: Customer churn, Data mining, Machine learning, Natural gas distribution.
References
[1]J. Miranda, P. Rey and R. Weber, «Predicción de Fugas de Clientes para una Institución Financiera Mediante Support Vector Machines,» Revista Ingeniería de Sistemas Volumen XIX, pp. 49-68, 2005.
[2]P. A. Pérez V., «Modelo de predicción de fuga de clientes de telefonía movil post pago,» Universidad de Chile, Santiago, Chile, 2014.
[3]Gas Sur S.A., «https://www.gassur.cl/Quienes-Somos/,» [En línea].
[4]J. Xiao, X. Jiang, C. He and G. Teng, «Churn prediction in customer relationship management via GMDH-based multiple classifiers ensemble,» IEEE Intelligent
Systems, vol. 31, nº 2, pp. 37-44, 2016.
[5]A. M. Almana, M. S. Aksoy and R. Alzahrani, «A survey on data mining techniques in customer churn analysis for telecom industry,» International Journal of Engineering Research and Applications, vol. 4, nº 5, pp. 165-171, 2014.
[6]A. Jelvez, M. Moreno, V. Ovalle, C. Torres and F. Troncoso, «Modelo predictivo de fuga de clientes utilizando mineríaa de datos para una empresa de telecomunicaciones en chile,» Universidad, Ciencia y Tecnología, vol. 18, nº 72, pp. 100-109, 2014.
[7]D. Anil Kumar and V. Ravi, «Predicting credit card customer churn in banks using data mining,» International Journal of Data Analysis Techniques and Strategies, vol. 1, nº 1, pp. 4-28, 2008.
[8]E. Aydoğan, C. Gencer and S. Akbulut, «Churn analysis and customer segmentation of a cosmetics brand using data mining techniques,» Journal of Engineering
and Natural Sciences, vol. 26, nº 1, 2008.
[9]G. Dror, D. Pelleg, O. Rokhlenko and I. Szpektor, «Churn prediction in new users of Yahoo! answers,» de Proceedings of the 21st International Conference on
World Wide Web, 2012.
[10]T. Vafeiadis, K. Diamantaras, G. Sarigiannidis and K. Chatzisavvas, «A comparison of machine learning techniques for customer churn prediction,» Simulation
Modelling Practice and Theory, vol. 55, pp. 1-9, 2015.
[11]Y. Xie, X. Li, E. Ngai and W. Ying, «Customer churn prediction using improved balanced random forests,» Expert Systems with Applications, vol. 36, nº 3, pp.
5445-5449, 2009.
[12]U. Fayyad, G. Piatetsky-Shapiro and P. Smyth, «Knowledge Discovery and Data Mining: Towards a Unifying Framework,» de KDD-96 Proceedings, 1996.
[13]R. Brachman and T. Anand, «The process of knowledge discovery in databases,» de Advances in knowledge discovery and data mining, 1996.
[14]K. Lakshminarayan, S. Harp, R. Goldman and T. Samad, «Imputation of Missing Data Using Machine Learning Techniques,» de KDD, 1996.
[15]B. Nguyen , J. L. Rivero and C. Morell, «Aprendizaje supervisado de funciones de distancia: estado del arte,» Revista Cubana de Ciencias Informáticas, vol. 9, nº 2, pp. 14-28, 2015.
[16]I. Monedero, F. Biscarri, J. Guerrero, M. Peña, M. Roldán and C. León, «Detection of water meter under-registration using statistical algorithms,» Journal of Water Resources Planning and Management, vol. 142, nº 1, p. 04015036, 2016.
[17]I. Guyon and A. Elisseeff, «An introduction to variable and feature selection,» Journal of machine learning research, vol. 3, nº Mar, pp. 1157-1182, 2003.
[18]K. Polat and S. Güneş, «A new feature selection method on classification of medical datasets: Kernel F-score feature selection,» Expert Systems with Applications, vol. 36, nº 7, pp. 10367-10373, 2009.
[19]D. J. Matich, «Redes Neuronales. Conceptos Básicos y Aplicaciones,» de Cátedra: Informática Aplicada ala Ingeniería de Procesos- Orientación I, 2001.
[20]E. Acevedo M., A. Serna A. and E. Serna M., «Principios y Características de las Redes Neuronales Artificiales, » de Desarrollo e Innovación en Ingeniería, Medellín, Editorial Instituto Antioqueño de Investigación, 2017, pp. Capítulo 10, 173-182.
[21]M. Hofmann and R. Klinkenberg, RapidMiner: Data mining use cases and business analytics applications, CRC Press, 2016.
[22]R. Pupale, «Towards Data Science,» 2018. [En línea]. Available: https://towardsdatascience.com/https-medium-com-pupalerushikesh-svm-f4b42800e989.
[23]F. H. Troncoso Espinosa, «Prediction of recidivismin thefts and burglaries using machine learning,» Indian Journal of Science and Technology, vol. 13, nº 6, pp. 696-711, 2020.
[24]L. Tashman, «Out-of-sample tests of forecasting accuracy: an analysis and review,» International journal of forecasting, vol. 16, nº 4, pp. 437-450, 2000.
[25]S. Varma and R. Simon, «Bias in error estimation when using cross-validation for model selection,» BMC bioinformatics, vol. 7, nº 1, p. 91, 2006.
[26]N. V. Chawla, K. W. Bowyer, L. O. Hall and W. Kegelmeyer, «SMOTE: Synthetic Minority Over-sampling Technique,» Journal of Artificial Inteligence Research
16, pp. 321-357, 2002.
[27]M. Sokolova and G. Lapalme, «A systematic analysis of performance measures for classification tasks,» Information processing & management, vol. 45, nº 4, pp. 427-437, 2009.
[28]S. Narkhede, «Understanding AUC-ROC Curve,» Towards Data Science, vol. 26, 2018.
[29]R. Westermann and W. Hager, «Error Probabilities in Educational and Psychological Research,» Journal of Educational Statistics, Vol 11, No 2, pp. 117-146, 1986.
This work is licensed under a Creative Commons Attribution 4.0 International License.