Abstract
This work presents the lift and drag coefficient curves, as functions of the angle of attack, for the NACA0012, S809 and SG6043 airfoils in turbulent flow conditions. The objective is to identify the airfoil with the best aerodynamic performance under conditions that are descriptive of small scale wind turbine. With the use of OpenFOAM, an analysis was done by numerical simulation. In the case of the NACA0012 airfoil, it was found that the performance is insensitive to the changes in turbulence and the Reynold number. The aerodynamic response of the S809 airfoil is to increase both the drag and lift as the turbulence increases. The SG6043 airfoil responds the best out of the three in turbulent flow, given that the lift curves mostly increase with the turbulence. The curves reported in this work are new and not found in previous literature.
Keywords: aerodynamics, lift, drag, turbulence
References
[1]R. Madriz-Vargas, A. Bruce, M. Watt, L. G. Mogollón and H. R. Álvarez, «Community renewable energy in Panama: a sustainability assessment of the “Boca
de Lura” PV-Wind-Battery hybrid power system,» Renewable Energy and Environmental Sustainability, vol. 2, nº 18, pp. 1-7, 2017. https://doi.org/10.1051/
rees/2017040.
[2]S. Mertenes, «Wind Energy in the Built Environment, » Ph.D. dissertation. Multi-Science, Brentwood, 2006.
[3]P. Giguere and M. S. Selig, «New airfoils for small horizontal axis wind turbines,» Journal of Solar Energy Engineering-transactions, vol. 120, pp. 108-114, 1988. https://doi.org/10.1115/1.2888052.
[4]A. K. Wright and D. H. Wood, «The starting and low wind speed behaviour of a small horizontal axis wind turbine,» Journal of wind engineering and industrial aerodynamics, vol. 92, nº 14-15, pp. 1265-1279, 2004. https://doi.org/10.1016/j.jweia.2004.08.003.
[5]G. Richmond-Navarro, M. Montenegro-Montero and C. Otárola, «Revisión de los perfiles aerodinámicos apropiados para turbinas eólicas de eje horizontal y de pequeña escala en zonas boscosas,» Revista Lasallista de Investigación, vol. 17, nº 1, pp. 233-251, 2020. https://doi.org/10.22507/rli.v17n1a22.
[6]A. Tummala, R. K. Velamati, D. K. Sinha, V. Indraja and V. H. Krishna, «A review on small scale wind turbines, » Renewable and Sustainable Energy Reviews,
vol. 56, pp. 1351-1371, 2016. https://doi.org/10.1016/j.rser.2015.12.027.
[7]L. Pagnini, M. Burlando and M. Repetto, «Experimental power curve of small-size wind turbines in turbulent urban environment,» Applied Energy, vol. 154,
pp. 112-121, 2015. https://doi.org/10.1016/j.apenergy. 2015.04.117.
[8]W. D. Lubitz, «Impact of ambient turbulence on performance of a small wind turbine,» Renewable Energy, vol. 61, pp. 69-73, 2014. https://doi.org/10.1016/j.renene.2012.08.015.
[9]P. Devinant, T. Laverne and J. Hureau, «Experimental study of wind-turbine airfoil aerodynamics in high turbulence, » Journal of Wind Engineering and Industrial Aerodynamics, vol. 90, nº 6, pp. 689-707, 2002. https://doi.org/10.1016/S0167-6105(02)00162-9.
[10]C. Sicot, P. Devinant, S. Loyer and J. Hureau, «Rotational and turbulence effects on a wind turbine blade. Investigation of the stall mechanisms,» Journal of
wind engineering and industrial aerodynamics, vol. 96, nº 8-9, pp. 1320-1331, 2008. https://doi.org/10.1016/j.jweia.2008.01.013.
[11]C. R. Chu and P. H. Chiang, «Turbulence effects on the wake flow and power production of a horizontal-axis wind turbine,» Journal of Wind Engineering and Industrial Aerodynamics, vol. 124, pp. 82-89, 2014. https://doi.org/10.1016/j.jweia.2013.11.001.
[12]Y. Kamada, T. Maeda, J. Murata and Y. Nishida, «Visualization of the flow field and aerodynamic force on a Horizontal Axis Wind Turbine in turbulent inflows,» Energy, vol. 111, pp. 57-67, 2016. https://doi.org/10.1016/j.energy.2016.05.098.
[13]Q. A. Li, J. Murata, M. Endo, T. Maeda and Y. Kamada, «Experimental and numerical investigation of the effect of turbulent inflow on a Horizontal Axis Wind
Turbine (Part I: Power performance),» Energy, vol.113, pp. 713-722, 2016. https://doi.org/10.1016/j.energy.2016.06.138.
[14]S. W. Li, S. Wang, J. P. Wang and J. Mi, «Effect of turbulence intensity on airfoil flow: Numerical simulations and experimental measurements,» Applied Mathematics and Mechanics, vol. 32, nº 8, pp. 1029-1038, 2011. https://doi.org/10.1007/s10483-011-1478-8.
[15]S. Wang, Y. Zhou, M. M. Alam and H. Yang, «Turbulent intensity and Reynolds number effects on an airfoil at low Reynolds numbers,» Physics of Fluids, vol. 26, nº11, p. 115107, 2014. https://doi.org/10.1063/1.4901969.
[16]M. Lin and H. Sarlak, «A comparative study on the flow over an airfoil using transitional turbulence models, » AIP Conference Proceedings, vol. 1738, p.030050, 2016. https://doi.org/10.1063/1.4951806.
[17]Langley Research Center, «Turbulence Modelling Resource,» NASA, [Online]. Available: https://turbmodels.larc.nasa.gov/langtrymenter_4eqn.html. [Last access: 08 03 2021].
This work is licensed under a Creative Commons Attribution 4.0 International License.