Application of an artificial neural network in the recognition of geometric figures
PDF
HTML

Keywords

image recognition
machine learning
artificial neural networks
artificial intelligence

How to Cite

Adrianzen Olano, I., Villegas Cubas, J. E., Vega Huertas, H., & Maquen Nino, G. L. E. (2022). Application of an artificial neural network in the recognition of geometric figures. Universidad Ciencia Y Tecnología, 26(114), 93-107. https://doi.org/10.47460/uct.v26i114.594

Abstract

The objective was to implement an artificial neural network to improve the recognition of geometric figures that later allow making estimates about shapes in a real context to create virtual planes. A Matlab program was developed to create the neural network and two knowledge bases containing fifteen different geometric figures that were developed for the training stage and for the recognition stage. The results of the training phase were carried out in three processes, obtaining a percentage of 11.35%, 3.55%, and 2% error margin respectively, later came the recognition stage with three processes, obtaining 40%, 100%, and 100% figures recognized respectively. It is concluded that the implemented neural network performed the recognition of fifteen geometric figures correctly (100%), requiring three training processes and three recognition processes to verify their learning.

Keywords: Image recognition, Machine learning, artificial neural networks, artificial intelligence.

https://doi.org/10.47460/uct.v26i114.594
PDF
HTML

References

[1] R. Flórez y J. Fernández., Las Redes Neuronales Artificiales: Fundamentos Teóricos y Aplicaciones Prácticas, España: Netbiblo, 2006.
[2] J. L. Ramirez Arias, A. Rubiano Fonseca y R. Jimenez Moreno, «Object Recognition Through Artificial Intelligence Techniques,» Revista Facultad de Ingeniería, 2020.
[3] L. Sandoval, «ALGORITMOS DE APRENDIZAJE AUTOMÁTICO PARA ANÁLISIS Y PREDICCIÓN DE DATOS,» ITCA-FEPADE, vol. 11, nº 36-40, 2018.
[4] S. J. Russell y P. Norvig, Inteligencia artificial: un enfoque moderno, 2da Ed. ed., Nueva York: Pearson Education, 2004, p. 1212.
[5] G. Cheng y X. Dong, «From Chaos to Order: Methodologies, Perspectives, and Applications.,» World Scientific, 1198.
[6] F. Rosenblatt y C. Laboratory, The pertron: a theory of statistical separability in cognitive systems (Project Para).Cornell Aeronautical Laboratory, 1958.
[7] P. Werbos, «The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting,» 1994.
[8] I. A. Ruge Ruge y J. D. Alvarado, «Sistema basado en FPGA para la evaluación de redes neuronales orientadas al reconocimiento de imágenes,» Tecnura, vol. 17, nº 36, 2013.
[9] J. C. Herrera Perez, S. M. Medina Ortiz, G. E. Martinez LLanos, K. d. J. Beleño Saenz y J. S. Berrio Perez, «Clasificación de los frutos de café según su estado de maduración y detección de la broca mediante técnicas de procesamiento de imágenes,» Prospectiva, pp. 15-22, 2016.
[10] Q. Yang, «Classification of apple surface features using machine vision and neural networks.,» Computers and Electronics in Agriculture, vol. 1, nº 9, pp. 1-12, 1993.
[11] K. Nakano, «Application of neural networks to the color grading of apples,» Computers and Electronics in Agriculture, vol. 3, nº 18, pp. 105-116, 1997.
[12] H. F. Vega Huertas, «Redes neuronales para el reconocimiento de la calidad morfológica de mangos exportables para la empresa Biofruit del Perú S.A.C.,» Lima, 2011.
[13] H. P. Chan, S. C. B. Lo, B. Sahiner, K. Lam y M. Helvie, «Computer-aided detection of mammographic microcalcifications: Pattern recognition with an artificial neural network,» Med. Phys., nº 22, pp. 1555-1567, 1995.
[14] J. P. Balarini, S. Nesmachnow y M. ´Rodriguez, «Recognition Using Neural Networks over GPU,» CLEI Electronic Journal, vol. 15, nº 3, 2012.
[15] H. d. J. Mesa Yepes, J. W. Brancha Bedoya y C. Lopez Amaya, «Sistema de detección de esquinas en imágenes digitales en tonos de gris, basado en redes neuronales artificiales,» Revista Avances en Sistemas e Informática, pp. 195-200, 2008.
[16] R. Pino, A. Gómez y N. Abajo, Introducción a la Inteligencia Artificial: Sistemas Expertos, Redes Neuronales Artificiales y Computación Evolutiva, España: Universidad de Oviedo, 2001.
[17] G. A. Figueredo Avila y J. A. Ballesteros Ricaurte, «Identificación del estado de madurez de las frutas con redes neuronales artificiales, una revisión,» Revista Ciencia y Agricultura (Rev Cien Agri), vol. 13, nº 1, pp. 117-132, 2016.
[18] R. Hernandez Sampieri, C. Fernández Collado y P. Baptista Lucio, «Metodología de la Investigación,» McGraw-Hill (4ta Ed.), México, 2008.
[19] A. Gilat, Matlab.Una introducciòn con ejemplos prácitcos, Barcelona: Revertè S.A., 2005.
[20] J. González, J. Lez, M. Coaut y V. Hernando, Redes neuronales artificiales: Fundamentos, modelos y aplicaciones.,
Addison-Wesley Iberoamericana, , 1995.
[21] E. Cabello Pardos, «Técnicas de reconocimiento facial,» 2012.
[22] J. Carrasco Ochoa y J. Martinez Trinidad, «Reconocimiento de patrones,» Komputer Sapiens, pp. 5-9, 2011.
[23] T. Morimoto y Y. Hashimoto, «An intelligent control for greenhouse automation, oriented by the concepts of SPA
and SFA - an application to a post-harvest process,» Computers and Electronics in Agriculture, pp. 179-194, 2000.
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.