Prediction of absenteeism in medical appointments using Machine Learning


machine learning
medical appointments

How to Cite

Valenzuela-Nunez, C. I., Troncoso Espinosa, F. H., & Latorre-Nunez, G. O. (2023). Prediction of absenteeism in medical appointments using Machine Learning. Universidad Ciencia Y Tecnología, 27(120), 19-30.


The scheduling of medical appointments is an activity of great importance in a hospital since different human and material capitals must be used efficiently. One of the problems of this work is the non-attendance of a patient, which decreases the efficiency of the use of resources. Several studies have proposed considering "absenteeism" for scheduling medical appointments to address this. However, predicting it is a complex task. This research proposes the prediction of absenteeism to medical appointments for three medical areas of the Hospital Clínico Regional Dr. Guillermo Grant Benavente in the city of Concepción, Chile. For this purpose, five Machine Learning algorithms are trained and evaluated. The best-trained model managed to be a predictive tool of a patient's absenteeism level for his next appointment and to characterize those patients with higher levels of no-show.


[1] G. Lamé, O. Jouini y J. Stal-Le Cardinal, «Outpatient chemotherapy planning: A literature review with insights from a case study,» IIE Transactions on Healthcare Systems Engineering, vol. 6, p. 127–139, 2016.
[2] M. C. Rossi y H. Balasubramanian, «Panel size, office visits, and care coordination events: a new workload estimation methodology based on patient longitudinal event histories,» MDM Policy & Practice, vol. 3, p. 2381468318787188, 2018.
[3] E. Kaplan-Lewis y S. Percac-Lima, «No-show to primary care appointments: why patients do not come,» Journal of Primary Care & Community Health, vol. 4, p. 251–255, 2013.
[4] M. Samorani, S. L. Harris, L. G. Blount, H. Lu y M. A. Santoro, «Overbooked and overlooked: Machine learning and racial bias in medical appointment scheduling,» Manufacturing & Service Operations Management, 2021.
[5] G. Fan, Z. Deng, Q. Ye y B. Wang, «Machine learning-based prediction models for patients no-show in online outpatient appointments,» Data Science and Management, vol. 2, p. 45–52, 2021.
[6] S. AlMuhaideb, O. Alswailem, N. Alsubaie, I. Ferwana y A. Alnajem, «Prediction of hospital no-show appointments through artificial intelligence algorithms,» Annals of Saudi medicine, vol. 39, p. 373–381, 2019.
[7] S. L. Harris y M. Samorani, «On selecting a probabilistic classifier for appointment no-show prediction,» Decision Support Systems, vol. 142, p. 113472, 2021.
[8] I. Mohammadi, H. Wu, A. Turkcan, T. Toscos y B. N. Doebbeling, «Data analytics and modeling for appointment no-show in community health centers,» Journal of primary care & community health, vol. 9, p. 2150132718811692, 2018.
[9] S. R. Devasahay, S. Karpagam y N. L. Ma, «Predicting appointment misses in hospitals using data analytics,» Mhealth, vol. 3, 2017.
[10] D. B. Ferro, S. Brailsford, C. Bravo y H. Smith, «Improving healthcare access management by predicting patient no-show behavior,» Decision Support Systems, vol. 138, p. 113398, 2020.
[11] S. R. Timarán-Pereira, I. Hernández-Arteaga, S. J. Caicedo-Zambrano, A. Hidalgo-Troya y J. C. Alvarado-Pérez, «El proceso de descubrimiento de conocimiento en bases de datos,» Descubrimiento de patrones de desempeño académico con árboles de decisión en las competencias genéricas de la formación profesional, p. 63–86, 2016.
[12] F. H. T. Espinosa, «Prediction of recidivism in thefts and burglaries using machine learning,» Indian Journal of Science and Technology, vol. 13, p. 696–711, 2020.
[13] M. N. Sulaiman y R. W. Rahmat, «Improving accuracy metric with precision and recall metrics for optimizing stochastic classifier,» 2011.
[14] S. Tangirala, «Evaluating the impact of GINI index and information gain on classification using decision tree classifier algorithm,» International Journal of Advanced Computer Science and Applications, vol. 11, p. 612–619, 2020.
[15] A. Nelson, D. Herron, G. Rees y P. Nachev, «Predicting scheduled hospital attendance with artificial intelligence,» NPJ digital medicine, vol. 2, p. 1–7, 2019.
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Download data is not yet available.