Modeling of renewable energy systems on convolution codesusing interference patterns
PDF
HTML

Keywords

research into energy systems
modern physics
interference patterns

How to Cite

Sandoval-Ruiz, C. (2025). Modeling of renewable energy systems on convolution codesusing interference patterns. Universidad Ciencia Y Tecnología, 29(126), 111-122. https://doi.org/10.47460/uct.v29i126.927

Abstract

This study proposes a novel systems modeling approach based on interference patterns to characterize element interactions with energy variables through resulting projective patterns. The methodology encompasses three key phases: identification of distinct system stages, implementation of convolutional code modeling, and establishment of correlation indices between wave patterns to derive generalized parametric equations. Results demonstrate the development of a convolution element containing dual terms that quantify residual stored energy and energy polarized by the system's component elements. The model presents an innovative framework for physical systems analysis and renewable energy park optimization by comprehensively integrating all energy components into a unified mathematical representation. This approach enables more accurate prediction of system behavior under varying conditions and provides a foundation for improved efficiency in renewable energy applications.

https://doi.org/10.47460/uct.v29i126.927
PDF
HTML

References

[1] L. Beraldo, D.Albiero, A. J. Da Silva Maciel, I. Dal Fabbro, & S. Rodrigues. Técnica de Moiré aplicada al análisis de esfuerzos de compresión en el bambu guadua. Maderas. Ciencia y tecnología, vol. 9, no. 3, pp. 309-322, 2007.
[2] C. Sandoval-Ruiz. Ω – Vórtices y acoplamientos resonantes en modelo de patrón de flujo toroidal regenerativo mediante física moderna y ondas, Calibre, vol. 41, no. 1, pp. 1-20, 2024.
[3] R. Dash. (2020). Performance analysis of an evolutionary recurrent Legendre Polynomial Neural Network in application to FOREX prediction. Journal of King Saud University-Computer and Information Sciences, vol, 32, no. 9, pp. 1000-1011.
[4] A. Golmankhaneh, & D. Baleanu. About Maxwell’s equations on fractal subsets of ℝ3. Open Physics, vol. 11, no. 6, pp. 863-867, 2013.
[5] C. Medina. Estudio teórico, numérico y experimental sobre la fuerza de arrastre en oscilaciones amortiguadas. Revista Brasileira de Ensino de Física, vol. 46, e20240017, 2024.
[6] F. Manjón, J. Villalba, E. Arribas, A. Nájera, A. Beléndez and J. A. Monsoriu, Vórtices no estacionarios en un vaso de agua, Revista Brasileira de Ensino de Física, vol. 35, no. 3, pp. 3304, 2013.
[7] B. Mills, C. Ho, N. Schroeder, R. Shaeffer, H. Laubscher, & K. Albrecht. Design evaluation of a next-generation high-temperature particle receiver for concentrating solar thermal applications. Energies, vol. 15, no. 5, pp. 1657, 2022.
[8] C. Sandoval-Ruiz. e-KiteLab: Investigación en Física aplicada para mantenimiento y optimización de sistemas de energías renovables. Revista I&D, vol. 14, no. 1, pp. 95-105, 2024.
[9] I. Castro-Fernández, R. Borobia-Moreno, R. Cavallaro & G. Sánchez-Arriaga. Three-dimensional unsteady aerodynamic analysis of a rigid-framed delta kite applied to airborne wind energy. Energies, vol. 14, no. 23, pp. 8080, 2021.
[10] J. Rodríguez. Polarización de la luz: conceptos básicos y aplicaciones en astrofísica. Revista Brasileira de Ensino de Física, vol. 40, no. 4, e4310, 2018.
[11] C. Sandoval-Ruiz. Fractal mathematical over extended finite fields Fp[x]/(f(x)), Proyecciones, vol. 40, no. 3, pp. 731–742, 2021.
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.