Innovative Methods for Early Detection of Oral Cancer: A Systematic Review
PDF
HTML

Keywords

oral cancer
early detection
artificial intelligence
salivary biomarkers

How to Cite

Rojas Ortega, R. A., Barzola Loayza, M. G., Gomez Carrion, C. E., & Saravia Alviar, R. A. (2025). Innovative Methods for Early Detection of Oral Cancer: A Systematic Review. Universidad Ciencia Y Tecnología, 29(128), 82-91. Retrieved from https://uctunexpo.autanabooks.com/index.php/uct/article/view/990

Abstract

Oral cancer is the sixth most common type of cancer and the cause of thousands of deaths worldwide due to various limitations during diagnosis and treatment. In view of this, it is necessary to streamline processes to achieve early diagnosis and prevent its proliferation. The present review sought to explore the application of technological tools for the development of novel methods for early detection of oral cancer, as well as opportunities for improvement. From this, the systematic review was developed taking into consideration the guidelines of the PRISMA method, compiling a total of 50 articles. The results obtained highlight the use of technological advances such as artificial intelligence, biomarkers, and noninvasive tools such as optical fluorescence. Although these advances showed a high potential for the early detection of oral cancer, further research is still required for their practical implementation.

PDF
HTML

References

D. E. Ordóñez, A. F. Chamorro, J. A. Cruz, and M. A. Pizarro, “Evaluación del conocimiento del cáncer oral y manejo odontológico del paciente oncológico en Cali, Colombia,” Acta Odontológica Colombiana, vol. 10, no. 1, 2020, doi: 10.15446/aoc.v10n1.82933.

D. C. Cazar and A. D. C. Armas, “Etiología más frecuente del cáncer oral en adultos jóvenes: Una revisión de literatura,” Revista San Gregorio, vol. 52, pp. 175–188, 2022, doi: 10.36097/rsan.v0i52.2149.

S. Abati, C. Bramati, S. Bondi, A. Lissoni, and M. Trimarchi, “Oral Cancer and Precancer: A Narrative Review on the Relevance of Early Diagnosis,” Int J Environ Res Public Health, vol. 17, no. 24, p. 9160, 2020, doi: 10.3390/ijerph17249160.

I. Molina-Ávila, J. M. Pimentel-Solá, A. Rocha-Buelvas, and C. A. Hidalgo-Patiño, “Cáncer Oral: Conocimiento, Actitudes y Prácticas de los Odontologos de la Provincia de Salta, Argentina, 2018,” International journal of odontostomatology, vol. 16, no. 2, pp. 249–257, 2022, doi: 10.4067/S0718-381X2022000200249.

B. Y. H. Serna, J. A. O. Betancourt, O. P. L. Soto, R. C. do Amaral, and M. del P. C. Correa, “Tendencia de la incidencia, mortalidad y años de vida ajustados por discapacidad del cáncer oral en América Latina,” Revista Brasileira de Epidemiologia, vol. 25, 2022, doi: 10.1590/1980-549720220034.2.

M. J. Page et al., “Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas,” Rev Esp Cardiol, vol. 74, no. 9, pp. 790–799, 2021, doi: 10.1016/j.recesp.2021.06.016.

Y. Hassona et al., “How good is ChatGPT at answering patients’ questions related to early detection of oral (mouth) cancer?,” Oral Surg Oral Med Oral Pathol Oral Radiol, vol. 138, no. 2, pp. 269–278, 2024, doi: 10.1016/j.oooo.2024.04.010.

L. Zhang and X. Wang, “Optical Resolution Photoacoustic Microscopy Imaging in the Detection of Early Oral Cancer under Image Reconstruction Algorithm,” Comput Math Methods Med, vol. 2022, pp. 1–11, 2022, doi: 10.1155/2022/6077748.

H.-W. Chu et al., “Identification of Salivary Biomarkers for Oral Cancer Detection with Untargeted and Targeted Quantitative Proteomics Approaches,” Molecular & Cellular Proteomics, vol. 18, no. 9, pp. 1796–1806, 2019, doi: 10.1074/mcp.RA119.001530.

I. L. Pinto, J. G. Carlos, A. P. Oliveira de Araujo, and C. M. D. Wannmacher, “Wide field scanning by optical fluorescence of oral squamous cell carcinoma (SCC): case report,” RGO - Revista Gaúcha de Odontologia, vol. 69, p. e20210028, 2021, doi: 10.1590/1981-86372021002820190139.

D. Varalakshmi, M. Tharaheswari, T. Anand, and K. M. Saravanan, “Transforming oral cancer care: The promise of deep learning in diagnosis,” Oral Oncology Reports, vol. 10, p. 100482, 2024, doi: 10.1016/j.oor.2024.100482.

R. O. Alabi, I. O. Bello, O. Youssef, M. Elmusrati, A. A. Mäkitie, and A. Almangush, “Utilizing Deep Machine Learning for Prognostication of Oral Squamous Cell Carcinoma—A Systematic Review,” Frontiers in Oral Health, vol. 2, 2021, doi: 10.3389/froh.2021.686863.

G. Kumar, S. Jena, A. Jnaneswar, K. Jha, V. Suresan, and A. Singh, “Advancements in diagnostic techniques for oral cancer detection,” Minerva Dental and Oral Science, vol. 71, no. 3, 2022, doi: 10.23736/S2724-6329.21.04637-4.

V. Nayyar et al., “Use of fluorescence imaging and spectrometry in detection of oral squamous cell carcinoma and oral potentially malignant disorders,” Oral Oncology Reports, vol. 9, p. 100172, 2024, doi: 10.1016/j.oor.2024.100172.

S. Y. Oh et al., “Potential Salivary mRNA Biomarkers for Early Detection of Oral Cancer,” J Clin Med, vol. 9, no. 1, p. 243, 2020, doi: 10.3390/jcm9010243.

B. Ilhan, K. Lin, P. Guneri, and P. Wilder-Smith, “Improving Oral Cancer Outcomes with Imaging and Artificial Intelligence,” J Dent Res, vol. 99, no. 3, pp. 241–248, 2020, doi: 10.1177/0022034520902128.

R. Wang and Y. Wang, “Fourier Transform Infrared Spectroscopy in Oral Cancer Diagnosis,” Int J Mol Sci, vol. 22, no. 3, p. 1206, 2021, doi: 10.3390/ijms22031206.

M. Krishnan, S. Basappa, and S. Babu, “Epigenetic alterations in oral cancer: Mechanisms, biomarkers, and therapeutic targets,” Oral Oncology Reports, vol. 12, p. 100681, 2024, doi: 10.1016/j.oor.2024.100681.

P. Gopikrishna, A. Ramesh kumar, K. Rajkumar, R. Ashwini, and S. Venkatkumar, “Saliva: A potential diagnostic tool for oral cancer and oral diseases - A detailed review,” Oral Oncology Reports, vol. 10, p. 100508, 2024, doi: 10.1016/j.oor.2024.100508.

T. Fujimoto, E. Fukuzawa, S. Tatehara, K. Satomura, and J. Ohya, “Automatic Diagnosis of Early-Stage Oral Cancer and Precancerous Lesions from ALA-PDD Images Using GAN and CNN,” in 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), IEEE, 2022, pp. 2161–2164. doi: 10.1109/EMBC48229.2022.9871868.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.
tangkubanperahu.com
sibolangit.com
siguragura.com
simanindo.com
padarincang.com
kolektor.id
pelukis.id
pancoran.id
jasmani.id
cipanas.id
eksklusif.id
inovatif.id
xenia.id
wamena.id
parapat.id
penatapan.id
balige.id
topthreenews.com
aaatrucksandautowreckings.com
arbirate.com
playoutworlder.com
temeculabluegrass.com
eldesigners.com
cheklani.com
totodal.com
apkcrave.com
bestcarinsurancewsa.com
complidia.com
eveningupdates.com
mcochacks.com
mostcreativeresumes.com
oxcarttavern.com
riceandshinebrunch.com
shoesknowledge.com
aktualinformasi.id
faktadunia.id
gapurainformasi.id
gariscakrawala.id
helvetianews.id
langitcakrawala.id
langitinformasi.id
pintucakrawala.id
wawasancakrawala.id
aktualberita.id
cakrawalafakta.id
pintuinformasi.id
wawasaninformasi.id
horizonberita.id
portalcakrawala.id
spektruminformasi.id
aktualwawasan.id
gerbangfakta.id
infodinamika.id
narsis.id
pansos.id
forensik.id
hardiknas.com
pakcoy.com
http://mostravirtual.aip.pt
ACCSLOT88
accslot88
VIPBET76 VIPBET76 VIPBET76 OLXBET288 OLXBET288 Toto Slot Toto Slot Toto Slot