Abstract
Oral cancer is the sixth most common type of cancer and the cause of thousands of deaths worldwide due to various limitations during diagnosis and treatment. In view of this, it is necessary to streamline processes to achieve early diagnosis and prevent its proliferation. The present review sought to explore the application of technological tools for the development of novel methods for early detection of oral cancer, as well as opportunities for improvement. From this, the systematic review was developed taking into consideration the guidelines of the PRISMA method, compiling a total of 50 articles. The results obtained highlight the use of technological advances such as artificial intelligence, biomarkers, and noninvasive tools such as optical fluorescence. Although these advances showed a high potential for the early detection of oral cancer, further research is still required for their practical implementation.
References
D. E. Ordóñez, A. F. Chamorro, J. A. Cruz, and M. A. Pizarro, “Evaluación del conocimiento del cáncer oral y manejo odontológico del paciente oncológico en Cali, Colombia,” Acta Odontológica Colombiana, vol. 10, no. 1, 2020, doi: 10.15446/aoc.v10n1.82933.
D. C. Cazar and A. D. C. Armas, “Etiología más frecuente del cáncer oral en adultos jóvenes: Una revisión de literatura,” Revista San Gregorio, vol. 52, pp. 175–188, 2022, doi: 10.36097/rsan.v0i52.2149.
S. Abati, C. Bramati, S. Bondi, A. Lissoni, and M. Trimarchi, “Oral Cancer and Precancer: A Narrative Review on the Relevance of Early Diagnosis,” Int J Environ Res Public Health, vol. 17, no. 24, p. 9160, 2020, doi: 10.3390/ijerph17249160.
I. Molina-Ávila, J. M. Pimentel-Solá, A. Rocha-Buelvas, and C. A. Hidalgo-Patiño, “Cáncer Oral: Conocimiento, Actitudes y Prácticas de los Odontologos de la Provincia de Salta, Argentina, 2018,” International journal of odontostomatology, vol. 16, no. 2, pp. 249–257, 2022, doi: 10.4067/S0718-381X2022000200249.
B. Y. H. Serna, J. A. O. Betancourt, O. P. L. Soto, R. C. do Amaral, and M. del P. C. Correa, “Tendencia de la incidencia, mortalidad y años de vida ajustados por discapacidad del cáncer oral en América Latina,” Revista Brasileira de Epidemiologia, vol. 25, 2022, doi: 10.1590/1980-549720220034.2.
M. J. Page et al., “Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas,” Rev Esp Cardiol, vol. 74, no. 9, pp. 790–799, 2021, doi: 10.1016/j.recesp.2021.06.016.
Y. Hassona et al., “How good is ChatGPT at answering patients’ questions related to early detection of oral (mouth) cancer?,” Oral Surg Oral Med Oral Pathol Oral Radiol, vol. 138, no. 2, pp. 269–278, 2024, doi: 10.1016/j.oooo.2024.04.010.
L. Zhang and X. Wang, “Optical Resolution Photoacoustic Microscopy Imaging in the Detection of Early Oral Cancer under Image Reconstruction Algorithm,” Comput Math Methods Med, vol. 2022, pp. 1–11, 2022, doi: 10.1155/2022/6077748.
H.-W. Chu et al., “Identification of Salivary Biomarkers for Oral Cancer Detection with Untargeted and Targeted Quantitative Proteomics Approaches,” Molecular & Cellular Proteomics, vol. 18, no. 9, pp. 1796–1806, 2019, doi: 10.1074/mcp.RA119.001530.
I. L. Pinto, J. G. Carlos, A. P. Oliveira de Araujo, and C. M. D. Wannmacher, “Wide field scanning by optical fluorescence of oral squamous cell carcinoma (SCC): case report,” RGO - Revista Gaúcha de Odontologia, vol. 69, p. e20210028, 2021, doi: 10.1590/1981-86372021002820190139.
D. Varalakshmi, M. Tharaheswari, T. Anand, and K. M. Saravanan, “Transforming oral cancer care: The promise of deep learning in diagnosis,” Oral Oncology Reports, vol. 10, p. 100482, 2024, doi: 10.1016/j.oor.2024.100482.
R. O. Alabi, I. O. Bello, O. Youssef, M. Elmusrati, A. A. Mäkitie, and A. Almangush, “Utilizing Deep Machine Learning for Prognostication of Oral Squamous Cell Carcinoma—A Systematic Review,” Frontiers in Oral Health, vol. 2, 2021, doi: 10.3389/froh.2021.686863.
G. Kumar, S. Jena, A. Jnaneswar, K. Jha, V. Suresan, and A. Singh, “Advancements in diagnostic techniques for oral cancer detection,” Minerva Dental and Oral Science, vol. 71, no. 3, 2022, doi: 10.23736/S2724-6329.21.04637-4.
V. Nayyar et al., “Use of fluorescence imaging and spectrometry in detection of oral squamous cell carcinoma and oral potentially malignant disorders,” Oral Oncology Reports, vol. 9, p. 100172, 2024, doi: 10.1016/j.oor.2024.100172.
S. Y. Oh et al., “Potential Salivary mRNA Biomarkers for Early Detection of Oral Cancer,” J Clin Med, vol. 9, no. 1, p. 243, 2020, doi: 10.3390/jcm9010243.
B. Ilhan, K. Lin, P. Guneri, and P. Wilder-Smith, “Improving Oral Cancer Outcomes with Imaging and Artificial Intelligence,” J Dent Res, vol. 99, no. 3, pp. 241–248, 2020, doi: 10.1177/0022034520902128.
R. Wang and Y. Wang, “Fourier Transform Infrared Spectroscopy in Oral Cancer Diagnosis,” Int J Mol Sci, vol. 22, no. 3, p. 1206, 2021, doi: 10.3390/ijms22031206.
M. Krishnan, S. Basappa, and S. Babu, “Epigenetic alterations in oral cancer: Mechanisms, biomarkers, and therapeutic targets,” Oral Oncology Reports, vol. 12, p. 100681, 2024, doi: 10.1016/j.oor.2024.100681.
P. Gopikrishna, A. Ramesh kumar, K. Rajkumar, R. Ashwini, and S. Venkatkumar, “Saliva: A potential diagnostic tool for oral cancer and oral diseases - A detailed review,” Oral Oncology Reports, vol. 10, p. 100508, 2024, doi: 10.1016/j.oor.2024.100508.
T. Fujimoto, E. Fukuzawa, S. Tatehara, K. Satomura, and J. Ohya, “Automatic Diagnosis of Early-Stage Oral Cancer and Precancerous Lesions from ALA-PDD Images Using GAN and CNN,” in 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), IEEE, 2022, pp. 2161–2164. doi: 10.1109/EMBC48229.2022.9871868.

This work is licensed under a Creative Commons Attribution 4.0 International License.