Abstract
Agricultural activity in the Piura region is a fundamental activity for its development, the implementation of forecasts is a useful tool for economic agents to plan and make correct decisions. Two results are of interest in the study, the first to identify, estimate and validate an adjusted model to forecast banana production and the second to make the forecast of banana production for the period from October 2020 to October 2022. To specify the objectives, the univariate analysis was carried out with the Box and Jenkins methodology. The data comes from the Central Reserve Bank of Peru, monthly data from July 2000 to September 2020 were considered. Once the assumptions have been met, the best fit model to represent banana production and make forecasts is an Autoregressive Integrated Moving Average or ARIMA model. The forecast for banana production has a downward trend for the next few years.
Keywords: Forecast, Time series, ARIMA models, Agricultural production.
References
[1]A. A. S. Syed, A. Sajad, y U. J. Arshad, “Growth, Variability and Forecasting of Wheat and Sugarcane Production in Khyber Pakhtunkhwa, Pakistan,” Agric. Res. Technol. Open Access J., 2018.
[2]Instituo Nacional de Estadistica e Informatica, “Producción Nacional - INEI,” 2019.
[3]M. Laberry, “III Foro Nacional del Cultivo de Arroz,” 2016.
[4]L. Torres, “Análisis Económico del Cambio Climático en la Agricultura de la Región Piura. Caso: Principales Productos Agroexportables,” Consorc. Investig. Econ. y Soc. - CIES, 2010.
[5]Instituto Nacional de Estadistica e Informatica, “Producto Bruto Interno Por Departamentos,” 2019.
[6]D. Llico, “La minería, pesca y agricultura de Piura,” monografias.com, 2013.
[7]H. Moyazzem, A. Faruq, y K. Ajit, “Forecasting of Banana Production in Bangladesh,” Am. J. Agric. Biol. Sci., 2016.
[8]J. Ruiz, G. Hernández, y R. Zulueta, “Análisis de series de tiempo en el pronóstico de la producción de caña de azúcar,” Fac. Econ. - Univ. Veracruzana - Mex., 2010.
[9]V. Erossa, Proyectos de inversión en ingeniería: su metodología. 2004.
[10]A. Contreras, C. Atziry, M. José, y S. Diana, “Análisis de series de tiempo en el pronóstico de la demanda de almacenamiento de productos perecederos,” Estud. Gerenciales 32 p.387-396 - Mex., 2016.
[11]G. Mendoza, “Pronosticar y métodos de pronóstico.,” 2003.
[12]A. Muñoz y F. Parra, Econometria aplicada, Ediciones. 2007.
[13]M. A. Hamjah, “Forecasting major fruit crops productions in Bangladesh using Box-Jenkins ARIMA model.,” J. Econ. Sustain., vol. Dev., 5: 9, 2014.
[14]M. Casinillo y I. Manching, “Modeling the monthly production of banana using the box and Jenkins analysis.,” Am. J. Agric. Biol. Sci., 2016.
[15]N. Suleman y S. Sarpong, “Forecasting Milled Rice Production in Ghana Using Box- Jenkins Approach,” Int. J. Agric. Manag. Dev. (IJAMAD)., 2011.
[16]W. Merlin, “Modelo univariante de pronóstico del número de unidades de transfusión de sangre en el hospital regional Manuel Nuñez Butrón - Puno periodo 2006- 2015-I,” Universidad Nacional del Altiplano - Puno, 2015.
[17]L. Laurente, “Proyección de la producción de papa en puno. una aplicación de la metodología de Box-Jenkins,” Semest. Econ. - FIE - UNA Puno, 2018.
[18]Banco Central de Reserva del Perú, “Gerencia Central de Estudios Económicos,” 2019. [Online]. Available: https://estadisticas.bcrp.gob.pe/estadisticas/series/mensuales/resultados/PN01784AM/html.
[19]R. Hernández, C. Fernández, y M. del P. Baptista, Metodologia de la Investigación, vol. 6ta Ed. 2014.
[20]Banco Central de Reserva del Perú, “PIURA: Síntesis de Actividad Económica.” 2020, [Online]. Available: https://www.bcrp.gob.pe/estadisticas/informacion-regional/piura/piura.html.
[21]I. Moumouni et al., “What happens between technico-institutional support and adoption of organic farming? A case study from Benin,” Org. Agric., p. DOI 10.1007/s13165-013-0039-x., 2013.
[22]U. Yule, “On a Method of Investigating Periodicities in Disturbed Series, with Special Reference to Wolfer’s Sunspot Numbers,” Philos. Trans. R. Soc. London, 1926.
[23]E. Slutsky, “The Summation of Random Causes as the Source of Cyclical Processes,” Econom. 4 105-46, 1937., 1927.
[24]H. Wold, “A Study of the Analysis of Stationary Time Serie,” Uppsala: Almqvist and Wiksells., vol. 2nd ed.-19, 1938.
[25]G. Box y G. M. Jenkins, “Time Series Analysis, Forecasting and Control,” San Fr. Holden- Day, California, USA., 1976.
[26]D. Gujarati y D. Porter, Econometría. 2010.
[27]G. Box y D. Pierce, “Distribution of Residual Autocorrelations in Autoregressive Integrated Moving Average Time Series Models,” J. Am. Stat. Assoc., vol. 65, p, 1970.
[28]G. Ljung y G. Box, “On a measure of lack of fit in time series models.,” Biometrika, vol. V65: 297-3, 1978.
[29]C. Jarque y A. Bera, “A Test for Normality of Observations and Regression Residuals,” Int. Stat. Inst., vol. Vol. 55, N, 1978.
[30]D. A. Dickey y W. A. Fuller, “Distribution of the Estimators for Autoregressive Time Series with a Unit Root,” J. Am. Stat. Assoc., vol. 74, p, 1979.
[31]P. C. B. Phillips y P. Perron, “Testing for a Unit Root in Time Series Regression,” Biometrika, vol. 75, pp. 335–346,1988.
This work is licensed under a Creative Commons Attribution 4.0 International License.