Wax and bentonite blends for prototyping industrial clay development: preliminary results
PDF
HTML

Keywords

automotive
prototyping
latent heat
bentonite
paraffin

How to Cite

Agredo Orozco, A. F., Acosta Maya, D. A., Rodriguez Arroyave, C. A., & Sierra Zuluaga, L. F. (2021). Wax and bentonite blends for prototyping industrial clay development: preliminary results. Universidad Ciencia Y Tecnología, 25(111), 134-144. https://doi.org/10.47460/uct.v25i111.524

Abstract

The automotive design process and the materials in the automotive industry in recent years has caused great interest to the industrial and academic sector. In this study was to evaluate the effect of the amount of bentonite on the thermal and rheological properties of the compound bentonite / paraffin wax. Two bentonite ratios were used: paraffin wax (40:60 and 30:70). The paraffin was characterized by Fourier transform infrared spectroscopy (FTIR), the bentonite was characterized by means of x-ray diffraction (XRD), thermogravimetric analysis (TGA), X-ray fluorescence (XRF). The bentonite/paraffine wax composite was characterized by differential-scanning calorimetry (DSC) and rheology. The sample that contains a higher amount of bentonite shows a lower latent heat, and this could cause a greater heat transfer. Finally, the sample that has a lower amount of bentonite evidenced a lower viscosity, and it could be related to a lower interaction between the particles. The sample S1 due to its lower latent heat compared to S2 could represent an interesting alternative to develop prototyping
clays. since these materials are characterized by their low working temperatures and easy malleability.

Keywords: automotive, prototyping, latent heat, bentonite, paraffin.

References

[1]X. Ferràs-Hernández, E. Tarrats-Pons, and N. Arimany-Serrat, “Disruption in the automotive industry: A Cambrian moment,” Bus. Horiz., vol. 60, no. 6, pp.
855–863, 2017, doi: 10.1016/j.bushor.2017.07.011.

[2]O. Heneric, G. Licht, S. Lutz, and W. Urban, “The Europerean Automotive Industry in a Global Context,” Eur. Automot. Ind. Move, pp. 5–44, 2005, doi: 10.1007/3-7908-1644-2_2.

[3]S. I.-N. Delhi, “Automotive Revolution & Perspective Towards 2030,” Auto Tech Rev., vol. 5, no. 4, pp. 20–25, Apr. 2016, doi: 10.1365/s40112-016-1117-8.
[4]M. Tovey, J. Owen, and P. Street, “in Automotive Design,” vol. 21, pp. 569–588, 2000.

[5]Yasusato Yamada, Clay modeling : techniques for giving three-dimensional form to idea. 1997.

[6]H. Murray, “Industrial clays case study,” Mining, Miner. Sustain. Dev., vol. 1, no. 64, pp. 1–9, 2002, [Online]. Available: http://www.whitemudresources.com/
public/Hayn Murray Clays Case Study.pdf%0Ahttp://whitemudresources.com/public/Hayn Murray ClaysCase Study.pdf.

[7]Transparency Market Research, “Industrial Clay Market - Global Industry Analysis, Size, Share, Growth, Trends, and Forecast 2016 - 2024,” New york, 2016.
[8]J. Murphy, Additives for Plastics Handbook. Elsevier, 2001.

[9]Y. Hong, J. J. Cooper-White, M. E. Mackay, C. J. Hawker, E. Malmström, and N. Rehnberg, “A novel processing aid for polymer extrusion: Rheology and processing of polyethylene and hyperbranched polymer blends,” J. Rheol. (N. Y. N. Y)., vol. 43, no. 3, pp. 781–793, 1999, doi: 10.1122/1.550999.

[10]D. P. Rawski, P. Edwards, and U. States, “Pulp and Paper : Non fi brous Components,” no. January, pp.1–4, 2017, doi: 10.1016/B978-0-12-803581-8.10289-9.

[11]J. Speight, “Instability and incompatibility of tight oil and shale oil,” Shale Oil Gas Prod. Process., pp. 915–942, 2020, doi: 10.1016/b978-0-12-813315-
6.00017-8.

[12]T. P. Brown, L. Rushton, M. A. Mugglestone, and D. F. Meechan, “Health effects of a sulphur dioxide air pollution episode,” vol. 25, no. 4, pp. 369–371, 2003,
doi: 10.1093/pubmed/fdg083.

[13]R. Chihi, I. Blidi, M. Trabelsi-Ayadi, and F. Ayari, “Elaboration and characterization of a low-cost porous ceramic support from natural Tunisian bentonite clay,” Comptes Rendus Chim., vol. 22, no. 2–3, pp. 188–197, 2019, doi: 10.1016/j.crci.2018.12.002.

[14]Z. Yi, W. Xiaopeng, and L. I. Dongxu, “Prepartion of organophilic bentonite / paraffin composite phase change energy storage material with melting intercalation method,” pp. 126–131, 2011, doi: 10.4028/www.scientific.net/AMR.284-286.126.

[15]I. Krupa and A. S. Luyt, “Thermal and mechanical properties of extruded LLDPE / wax blends,” vol. 73, pp. 157–161, 2001.

[16]A. Saleem, L. Frormann, J. Koltermann, and C. Reichelt, “Fabrication and Processing of Polypropylene - Paraffin Compounds with Enhanced Thermal and
Processing Properties : Impact Penetration and Thermal Characterization,” vol. 40164, pp. 1–9, 2014, doi:10.1002/app.40164.

[17]M. Mu, P. A. M. Basheer, W. Sha, Y. Bai, and T. Mcnally, “Shape stabilised phase change materials based on a high melt viscosity HDPE and paraffin waxes,”
Appl. Energy, vol. 162, pp. 68–82, 2016, doi: 10.1016/j.apenergy.2015.10.030.

[18]M. Tovey, “Intuitive and objective processes in automotive design,” Des. Stud., vol. 13, no. 1, pp. 23–41, 1992, doi: 10.1016/0142-694X(92)80003-H.

[19]J. Verlinden, A. Kooijman, E. Edelenbos, and C. Go, “Investigation on the use of illuminated clay in automotive styling,” 6th Int. Conf. Comput. Ind. Des.
Concept. Des. (CAID&CD), Delft, NETHERLANDS, pp. 514–519, 2005.

[20]N. W. Muhamad Bustaman and M. S. Abu Mansor, “A Study on CAD/CAM Application in CNC Milling Using Industrial Clay,” Appl. Mech. Mater., vol. 761, pp. 32–36, 2015, doi: 10.4028/www.scientific.net/AMM.761.32.

[21]K. Shimokawa, Japan and the global automotive industry. 2010.

[22]A. Bucio, R. Moreno tovar, L. Bucio, J. Espinosadávila, and F. Anguebes franceschi, “Characterization of beeswax, candelilla wax and paraffin wax for coating
cheeses,” Coatings, vol. 11, no. 3, pp. 1–18, 2021, doi: 10.3390/coatings11030261.

[23]F. Valentini, A. Dorigato, A. Pegoretti, M. Tomasi, G. D. Sorarù, and M. Biesuz, “Si3N4 nanofelts/paraffin composites as novel thermal energy storage architecture,” J. Mater. Sci., vol. 56, no. 2, pp. 1537–1550, 2021, doi: 10.1007/s10853-020-05247-5.

[24]F. Paquin, J. Rivnay, A. Salleo, N. Stingelin, and C. Silva, “Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors,” J. Mater. Chem. C, vol. 3, pp. 10715–10722, 2015, doi: 10.1039/b000000x.

[25]R. S. Hebbar, A. M. Isloor, B. Prabhu, Inamuddin, A. M. Asiri, and A. F. Ismail, “Removal of metal ions and humic acids through polyetherimide membrane
with grafted bentonite clay,” Sci. Rep., vol. 8, no. 1, 2018, doi: 10.1038/s41598-018-22837-1.

[26]S. Betancourt-Parra, M. A. Domínguez-Ortiz, and M. Martínez-Tejada, “Colombian clays binary mixtures: Physical changes due to thermal treatments,” DYNA, vol. 87, no. 212, pp. 73–79, 2020, doi: 10.15446/dyna.v87n212.82285.

[27]A. M. Rabie, E. A. Mohammed, and N. A. Negm, “Feasibility of modified bentonite as acidic heterogeneous catalyst in low temperature catalytic cracking
process of biofuel production from nonedible vegetable oils,” J. Mol. Liq., vol. 254, no. 2018, pp. 260–266, 2018, doi: 10.1016/j.molliq.2018.01.110.

[28]A. Kadeche et al., “Preparation, characterization and application of Fe-pillared bentonite to the removal of Coomassie blue dye from aqueous solutions,” Res. Chem. Intermed., vol. 46, no. 11, pp. 4985–5008, 2020, doi: 10.1007/s11164-020-04236-2.

[29]C. I. R. De Oliveira, M. C. G. Rocha, A. L. N. DaSilva, and L. C. Bertolino, “Characterization of bentonite clays from Cubati, Paraíba Northeast of Brazil,” Ceramica, vol. 62, no. 363, pp. 272–277, 2016, doi:10.1590/0366-69132016623631970.

[30]I. Z. Hager, Y. S. Rammah, H. A. Othman, E. M. Ibrahim, S. F. Hassan, and F. H. Sallam, “Nano-structured natural bentonite clay coated by polyvinyl alcohol polymer for gamma rays attenuation,” J. Theor. Appl. Phys., vol. 13, no. 2, pp. 141–153, 2019, doi: 10.1007/ s40094-019-0332-5.

[31]A. Tebeje, Z. Worku, T. T. I. Nkambule, and J. Fito, “Adsorption of chemical oxygen demand from textile industrial wastewater through locally prepared bentonite adsorbent,” Int. J. Environ. Sci. Technol., no. 0123456789, 2021, doi: 10.1007/s13762-021-03230-4.

[32]F. E. Özgüven, A. D. Pekdemir, M. Önal, and Y. Sarıkaya, “Characterization of a bentonite and its permanent aqueous suspension,” J. Turkish Chem. Soc.
Sect. A Chem., vol. 7, no. 1, pp. 11–18, 2019, doi: 10.18596/jotcsa.535937.

[33]S. Tao, S. Wei, and Y. Yulan, “Characterization of Expanded Graphite Microstructure and Fabrication of Composite Phase-Change Material for Energy Storage,” J. Mater. Civ. Eng., vol. 27, no. 4, p. 04014156, 2015, doi: 10.1061/(asce)mt.1943-5533.0001089.

[34]M. Li, Z. Wu, H. Kao, and J. Tan, “Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material,” Energy Convers. Manag., vol. 52, no. 11, pp. 3275–3281, 2011, doi: 10.1016/j.enconman.2011.05.015.

[35]S. M. Hosseini, E. Ghasemi, A. Fazlali, and D. E. Henneke, “The effect of nanoparticle concentration on the rheological properties of paraffin-based Co3O4 ferrofluids,” J. Nanoparticle Res., vol. 14, no. 7, 2012, doi: 10.1007/s11051-012-0858-9.

https://doi.org/10.47460/uct.v25i111.524
PDF
HTML
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.