THERMAL TREATMENT OF HOMOGENIZED IN ALUMINUM BOARDS 3003 PRODUCED BY CONTINUOUS CASTING OF THE DOUBLE ROLLER PART 2: LAMINATION AND MECHANICAL CHARACTERIZATION
PDF (Español (España))
HTML (Español (España))

Keywords

AA3003 alloy
Double roll casting
Deep drawing
Cold Lamination

How to Cite

Azócar, L., Hidalgo, B., & Chon, S. (2018). THERMAL TREATMENT OF HOMOGENIZED IN ALUMINUM BOARDS 3003 PRODUCED BY CONTINUOUS CASTING OF THE DOUBLE ROLLER PART 2: LAMINATION AND MECHANICAL CHARACTERIZATION. Universidad Ciencia Y Tecnología, 22(86), 7. Retrieved from https://uctunexpo.autanabooks.com/index.php/uct/article/view/179

Abstract

The two 3003 aluminum alloy coils obtained via continuous double roller casting, which were subjected to homogenization treatment at 550 ° C-2 hours determined in the first part of this work, were cold rolled, one with three passes before annealed and the other with two, but both under more demanding thickness reduction conditions compared to the same untreated alloy. The coil with three passes was characterized by tensile testing in each of them, including the initial thickness 5.6 mm and the final 0.53 mm H14. The latter was subjected to a deep drawing test. The rolling results were favorable by eliminating two passes, with respect to the 3003 alloy without treatment and tensile tests, in the initial thickness they showed increases in the parameters that have the greatest influence on the plastic properties of a material: 31.8% in creep effort; 116.7% deformation until breakage; 58.6% in the hardening exponent. Deep drawing resulted in 4 Swift cups without cracking and earning failures of 1.4%. These results allow to conclude that the 3003 material with heat treatment is possible to stuff and obtain containers with low thickness walls.

Keywords: AA3003 alloy, Double roll casting, Deep drawing, Cold Lamination.

References

[1] J. F Shackelford, “Ciencia de los Materiales para Ingenieros”, (3ed). México, Prentice Hall, p. 162. 1995.

[2] J. D. Verheeven, “Fundamentos de Metalurgia”, Limusa. México, pp. 73-76. 1974.

[3] J. G. Sevillano, “Plasticidad de sólidos cristalinos mediante deslizamientos cristalográficos: Deformación de cristales bajo condiciones de contorno de desplazamiento”,  Universidad de Navarra , pp. 1-14. 2002.

[4] P. Hoel. “Estadística elemental”. C.E.C.S.A, 2ed. México, p. 74, 1974.

[5] G. I. Taylor, “Plastic Strain in Metals”, Twenty-Eighth May Lecture to Institute of Metals, pp. 307-317. 1938.

[6]. J. W. Hutchinson, ” Plastic stress-strain relations of F.C.C polycristaline metals hardening according to Taylor’s rule”,  J. Mech. Phys. Solids, Vol. 12, pp 11 to 24, Pergamon Press Ltd. Great Britain, 1968.

[7]. M. A. Meyers y K. K Chawla, “Mechanical Behavior of Materials”, Prentice-Halls. E.U, 117, pp. 126-127, 150-152, 171-172.1999.

[8] G. H. C. Navarro, “Evaluación y Caracterización de Aluminio CVG ALCASA 3105 Durante el Proceso de Laminado en Frío”,Tesis de Maestría. Universidad Nacional Experimental de Guayana, Puerto Ordaz, 2003.

[9] S. Villegas, “Caracterización mecánica y microestructural de la aleación AA 3003, vía Colada Continua de Doble Rodillo, sin Tratamiento de Homogeneizado”, Tesis de Maestría, sin publicar. Universidad Experimental de Guayana. Puerto Ordaz, 2012.

[10] J. H. Hollomon, “Tensile Deformation”, TransAIME, 1945, pp. 268-290.

 

 

PDF (Español (España))
HTML (Español (España))

Downloads

Download data is not yet available.