Abstract
This document describes the design process of a prototype of a transradial prosthesis with five degrees of freedom, which consists of five linear servomotors, two myoelectric sensors and hand design based on the 2nd part of DIN 33 402. This hand and forearm prosthesis has dimensional similarity to a hand and arm
under normal conditions, in addition, the movement of the phalanges of the fingers meets the proportions and mobility similar to the fingers of a human hand. The device is used to control Myoelectric sensors providing simple use for the user. The developed design has considered all functionality requirements in order to propose an alternative for mobility recovery improving the quality of life of the user In the coming years the design of new ones will be very relevant technologies that contribute to the reduction of pollutants, since humanity furrows through new social, economic and environmental research, seeking economic growth, oriented to social welfare, but without significantly altering the environment and ecosystems. This is where fields take importance
scientists such as nanotechnology, the same that manipulates materials at nanometric scales, with the objective that these perform specialized and definitive functions in a certain medium or place. Since in the Currently, there is a higher rate of contamination of aqueous media, it is imperative to seek green alternatives that contribute to diminish or inactivate harmful compounds, the same ones that proceed of previous industrial processes, that is, they are the price of the industrialization of our production systems In the modern era. This research work is bibliographic in nature, where the synthesis process and biosynthesis of iron nanoparticles (Fe3O4), which hypothetically help in the reduction of harmful elements in water. This section contributes to the exploration
in this new field scientific, so that other researchers can rely on these postulates, and obtain premises that contribute substantially to the development of stable nanomolecules, which eliminate unwanted compounds, and probably others feel challenged to develop physical theories that explain the behavior of these nanoparticles.
Keywords: Contaminated water, biosynthesis, magnetite, iron nanoparticles, nanotechnology.
[1]G. Calle, “Nanotecnología Conceptos Generales”, Revista de Información, Tecnología y Sociedad, 5, pp. 7-9, 2010.
[2]G. Mendoza and J. Rodríguez, “La nanociencia y la nanotecnología: una revolución en curso”, Perfiles latinoamericanos, 14 (29), pp. 161-186, 2007.
[3]F. Britto and G. Castro, “Nanotecnología, hacia un nuevo portal científico-tecnológico”, Química Viva, 11 (3), pp. 171-183, 2012.
[4]J. Hulla, S. Sahu and A. Hayes, “Nanotechnology: History and future”, Human and Experimental Toxicology, 34 (12), pp. 1318-1321, 2015.
[5]P. Casal, “Síntesis de Nanopartículas con Propiedades Adsorbentes Mediante Métodos de Química Sostenible”, Tesis de pregrado, Universidade da Coruña, Faculta de de Ciencias Departamento de Química Física e Enxeñería Química, La Coruña, España, 2015.
[6]Y. Mejias, N. Cabrera, A. Toledo and O. Duany, “La nanotecnología y sus posibilidades de aplicación en el campo científico-tecnológico”, Revista Cubana de Salud Pública, 35 (3), pp. 1-9, 2009.
[7]B. Vega, M. Zazo, V. Raposo, M. Arco and C. Martin, “Nanopartículas Magnéticas de óxido de Hierro como matrices de liberación controlada”, FarmaJournal, 1 (1), pp. 101-108, 2016.
[8]C. Lárez, S. Koteich and F. López, “Nanopartículas: Fundamentos y Aplicaciones”, Universidad de Los Andes, Departamento de Química, Facultad de Ciencias, Mérida, Venezuela, 2015.
[9]B. Cedano, “Evaluación de las propiedades antibacterianas de nanopartículas de cobre sintetizadas a partir de CuSO4 y extracto de eucalipto”, Tesis de pregrado, Universidad Nacional de San Agustín, Facultad de Ingeniería de Procesos, Perú, 2018.
[10]I. Bravo and R. Herrero, “Potencial de dendrímeros como vehículos de fármacos en Oftalmología”, Archivos de la Sociedad Española de Oftalmología, 82 (2), pp. 69-70, 2007.