Convergence and stability criteria for numerical solutions of partial differential equations in science and engineering
UCT-COVER-122
PDF
HTML

Keywords

simulation
convergence
stability
atmospheric discharges

How to Cite

Suarez-Carreno, F., & Rosales-Romero, L. (2024). Convergence and stability criteria for numerical solutions of partial differential equations in science and engineering. Universidad Ciencia Y Tecnología, 28(122), 7-16. https://doi.org/10.47460/uct.v28i122.761

Abstract

This paper explores the computational aspects of simulation and modeling applied to the solution of the Heaviside equation, considering the relevance of the stability and convergence of the solutions. For this purpose, a second-order finite difference scheme was implemented as the primary approach for studying atmospheric discharges (ATDI). The programming language used was Matlab, which facilitated calculating the induced currents in the study scenario. The centered, forward, and backward finite difference approaches were considered for the numerical implementation. System validation tests were performed to demonstrate the effectiveness of the design and convergence to the second order with the centered difference approach.

https://doi.org/10.47460/uct.v28i122.761
PDF
HTML

References

R. Álvarez and L. Rosales “Simulación de descargas atmosféricas y su efecto en líneas eléctricas de potencia”, UCT, V.16 Nro 64 2011.

P. Rodríguez, J. Toledo, E. Contreras, and L. Rosales “Simulación de descargas atmosféricas mediante la ecuación de onda viajera”, UCT V. 13, Nro 53 2009.

L. Rosales, W. Barreto, C. Peralta, and B. Rodríguez “Nonadiabatic charged evolution in the postquasistatic approximation” Phys. Rev. D, 40, 24 2010.

Thomas, J., “Numerical Partial Differential Equations-Finite Difference Methods,” USA, Springer-Verlag New York, Inc., 1995, pp. 205-258.

Hwang, C., “Numerical Modeling of Lightning Based on the Traveling Wave Equations”, IEEE Transactions on Industry Applications, Vol. 33, Nº. 2, 1997, pp. 1520-1523

McCann, G. et al., “Lightning Phenomena, Chap. 12, Electric Transmission and Distribution Reference Book”, Pittsburg, Westinghouse Electric & Manufacturing Co., 1950.

Torres, H., “El Rayo, Mitos, Leyendas, Ciencia y Tecnología”, 2daEdición, Bogotá, UNIBIBLOS, 2002.

Heidler, F. et al., “Calculation of Lightning Current Parameters”, IEEE Transactions on Power Delivery, Vol. 14, N º. 2, 1999, pp. 309-404.

Herrera, J., “Nuevas Aproximaciones en el Cálculo de Tensiones Inducidas por Descargas Eléctricas Atmosféricas”, Programa de Doctorado en Ingeniería Eléctrica, Facultad de Ingeniería, Departamento de Ingeniería Eléctrica y Electrónica, Universidad Nacional de Colombia, Colombia, 2006.

Agoris, D., Charalambakos, V., Pyrgloti, E., and Grzybowski, S. (2004). A computational approach to the study of Franklin rod height impact on striking distance using a stochastic model. J. Electrostatics. 60: 175-181.

Cole, P., Krehbiel, T.J., Henebry, and G.M. (2016). Web-Enabled Landsat Data Time Series for Monitoring Urban Heat Island Impacts on Land Surface Phenology. IEEE Journal Selected Topics in Applied Earth Observations and Remote Sensing, 9: 2043-2050.

Rakov, V., and Uman, M. (2003). Lightning: Physics and effects” Cambridge University Press. Cambridge, UK.

Torres, H. (2015). El rayo en el trópico. Colección apuntes maestros, Ed. UN, Bogotá, Colombia.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.