Abstract
The study of morphological characterization and optimization of bio-inputs based on efficient microorganisms is essential for agriculture and biotechnology. In this research, indigenous microorganisms were isolated and characterized, evaluating their growth in alternative culture media. Three media supplemented with alternative energy sources according to bacterial nutritional requirements at different concentrations were prepared. For the analysis, a Completely Randomized Design (CRD) with 25 treatments was used. In Medium 1, all strains showed uncountable bacterial counts due to excessive growth. The colonial growth results provide valuable information on the nutritional preferences and adaptive responses of bacteria to different culture conditions, providing key data for developing more efficient and sustainable bio-inputs.
References
[2] T. Morocho and M. Leiva, “Microorganismos eficientes, propiedades funcionales y aplicaciones agrícolas,” Cent. Agrícola, vol. 46, no. 2, pp. 93–103, 2019.
[3] M. C. Mestre et al., “de lechuga y zanahoria , en la Patagonia argentina carrot crops , in Argentinean Patagonia,” vol. 11, 2024.
[4] V. Gaveliene, B. Socik, E. Jankovska, and S. Jurkoniene, “Plant microbial biostimulants as a promising tool to enhance the productivity and quality of carrot root crops,” Microorganisms, vol. 9, no. 9, 2021.
[5] J. Alarcón, D. Recharte, F. Yanqui, M. Moreno, and M. Buendia, “Fertilizing with native efficient microorganisms has a positive effect on the phenology, biomass and production of tomato (Lycopersicum esculentum Mill),” Sci. Agropecu., vol. 11, no. 1, pp. 67–73, 2020.
[6] A. Velasco, O. Castellanos, G. Acevedo, R. Aarland, and A. Rodríguez, “Rhizospheric bacteria with potential benefits in agriculture,” Terra Latinoam., vol. 38, no. 2, pp. 343–355, 2020.
[7] J. Connor, “Descifrando el contenido microbiano de bioinsumos comerciales para el diseño de un consorcio con potencial biofertilizante,” 2019.
[8] K. Rivera, J. Villegas, and L. Moreno, “Escalado del Proceso de Producción de un Biofertilizante a Base de un Consorcio Bacteriano,” pp. 1–82, 2021.
[9] M. Peréz, J. García, E. Sotolongo, and A. Galuzzo, “Optimización del medio de cultivo y las condiciones de fermentación para la producción de un biofertilizante a base de Pseudomonas fluorescens,” vol. 19, no. 2, pp. 127–138, 2019.
[10] J. Rodríguez, “Evaluación de la cinética de crecimiento de PGPR y su actividad antagonista hacia Meloidogyne incognita ‘in vitro,’” pp. 43–44, 2018.
[11] S. M. Mazzoni-Putman, J. Brumos, C. Zhao, J. M. Alonso, and A. N. Stepanova, “Auxin interactions with other hormones in plant development,” Cold Spring Harb. Perspect. Biol., vol. 13, no. 10, pp. 1–39, 2021.
[12] V. Calatrava, E. F. Y. Hom, Q. Guan, A. Llamas, E. Fernández, and A. Galván, “Genetic evidence for algal auxin production in Chlamydomonas and its role in algal-bacterial mutualism,” iScience, vol. 27, no. 1, 2024.
[13] Chavéz-Cruz; and Herrera-Freire, “Nic 41 y su incidencia en el precio por caja de banano ecuato- riano, período 2019-2020,” Pap. Knowl. . Towar. a Media Hist. Doc., vol. 3, no. 2, p. 6, 2021.
[14] S. Shaikh, N. Yadav, and A. R. Markande, “Interactive potential of pseudomonas species with plants,” J. Appl. Biol. Biotechnol., vol. 8, no. 6, pp. 101–111, 2020.
[15] S. Pattnaik, B. Mohapatra, and A. Gupta, “Plant Growth-Promoting Microbe Mediated Uptake of Essential Nutrients (Fe, P, K) for Crop Stress Management: Microbe–Soil–Plant Continuum,” Front. Agron., vol. 3, no. August, pp. 1–20, 2021.

This work is licensed under a Creative Commons Attribution 4.0 International License.